Clinical Research in Cardiology

, Volume 108, Issue 1, pp 22–30 | Cite as

Renal sympathetic denervation induces changes in heart rate variability and is associated with a lower sympathetic tone

  • Annemiek F. Hoogerwaard
  • Mark R. de Jong
  • Ahmet Adiyaman
  • Jaap Jan J. Smit
  • Peter Paul H. M. Delnoy
  • Jan-Evert Heeg
  • Boudewijn A. A. M. van Hasselt
  • Anand R. Ramdat Misier
  • Michiel Rienstra
  • Isabelle C. van Gelder
  • Arif ElvanEmail author
Original Paper



Renal nerve stimulation (RNS) is used to localize sympathetic nerve tissue for selective renal nerve sympathetic denervation (RDN). Examination of heart rate variability (HRV) provides a way to assess the state of the autonomic nervous system. The current study aimed to examine the acute changes in HRV caused by RNS before and after RDN.

Methods and results

30 patients with hypertension referred for RDN were included. RNS was performed under general anesthesia before and after RDN. Heart rate (HR) and blood pressure (BP) were continuously monitored. HRV characteristics were assessed 1 min before and after RNS and RDN. RNS before RDN elicited a maximum increase in systolic BP of 45 (± 22) mmHg which was attenuated to 13 (± 12) mmHg (p < 0.001) after RDN. RNS before RDN decreased the sinus cycle length from 1210 (± 201) ms to 1170 (± 203) ms (p = 0.03), after RDN this effect was blunted (p = 0.59). The LF/HF ratio in response to RNS changed from  + 0.448 (± 0.550) before RDN to  − 0.656 (± 0.252) after RDN (p = 0.02). Selecting patients off beta-blockade (n = 11), the RNS-induced changes in HRV components before versus after RDN were more pronounced (LF/HF ratio  + 0.900 ± 1.171 versus  − 0.828 ± 0.519, p = 0.01), whereas changes in HRV parameters in patients on beta-blockade (n = 19) were no longer significant. In patients with diabetes mellitus (n = 7), RNS induced no changes in HRV parameters (LF/HF ratio  − 0.039 ± 0.103 versus  − 0.460 ± 0.491, p = 0.92).


RNS induces changes in HRV suggesting increased sympathetic activity. Conversely, after RDN, the RNS-induced changes in HRV suggesting a lower sympathetic autonomic balance. These changes were most pronounced in beta-blocker naïve patients and not present in patients with diabetes mellitus. These findings could support RNS-guided RDN to optimize results.


Renal sympathetic denervation Heart rate variability Hypertension Sympathetic nervous system 



We thank Vera Derks for excellent editorial assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Böhm M (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376:1903–1909CrossRefGoogle Scholar
  2. 2.
    Bakris GL, Townsend RR, Liu M, Cohen SA, D’Agostino R, Flack JM, Kandzari DE, Katzen BT, Leon MB, Mauri L, Negoita M, O’Neill WW, Oparil S, Rocha-Singh K, Bhatt DL, SYMPLICITY HTN-3 Investigators (2014) Impact of renal denervation on 24-hour ambulatory blood pressure: results from SYMPLICITY HTN-3. J Am Coll Cardiol 64:1071–1078CrossRefGoogle Scholar
  3. 3.
    Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, Ewen S, Tsioufis K, Tousoulis D, Sharp ASP, Watkinson AF, Schmieder RE, Schmid A, Choi JW, East C, Walton A, Hopper I, Cohen DL, Wilensky R, Lee DP, Ma A, Devireddy CM, Lea JP, Lurz PC, Fengler K, Davies J, Chapman N, Cohen SA, DeBruin V, Fahy M, Jones DE, Rothman M, Böhm M, SPYRAL HTN-OFF MED trial Investigators (2017) Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 390:2160–2170CrossRefGoogle Scholar
  4. 4.
    Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD (2009) Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med 361:932–934CrossRefGoogle Scholar
  5. 5.
    Persu A, Jin Y, Fadl Elmula FE, Jacobs L, Renkin J, Kjeldsen S (2014) Renal denervation after Symplicity HTN-3: an update. Curr Hypertens Rep 16:460CrossRefGoogle Scholar
  6. 6.
    Gal P, de Jong MR, Smit JJJ, Adiyaman A, Staessen JA, Elvan A (2015) Blood pressure response to renal nerve stimulation in patients undergoing renal denervation: a feasibility study. J Hum Hypertens 29:292–295CrossRefGoogle Scholar
  7. 7.
    de Jong MR, Adiyaman A, Gal P, Smit JJ, Delnoy PP, Heeg JE, van Hasselt BA, Lau EO, Persu A, Staessen JA, Ramdat Misier AR, Steinberg JS, Elvan A (2016) Renal nerve stimulation-induced blood pressure changes predict ambulatory blood pressure response after renal denervation. Hypertension 68:707–714CrossRefGoogle Scholar
  8. 8.
    Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84:482–492CrossRefGoogle Scholar
  9. 9.
    Heart rate variability: standards of measurement, physiological interpretation and clinical use (1996) Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93:1043–1065CrossRefGoogle Scholar
  10. 10.
    Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G (2003) Hypertension, blood pressure, and heart rate variability: the atherosclerosis risk in communities (ARIC) study. Hypertension 42:1106–1111CrossRefGoogle Scholar
  11. 11.
    Lucini D, Mela GS, Malliani A, Pagani M (2002) Impairment in cardiac autonomic regulation preceding arterial hypertension in humans: insights from spectral analysis of beat-by-beat cardiovascular variability. Circulation 106:2673–2679CrossRefGoogle Scholar
  12. 12.
    Mussalo H, Vanninen E, Ikäheimo R, Laitinen T, Laakso M, Länsimies E, Hartikainen J (2001) Heart rate variability and its determinants in patients with severe or mild essential hypertension. Clin Physiol 21:594–604CrossRefGoogle Scholar
  13. 13.
    Pagani M, Lucini D (2001) Autonomic dysregulation in essential hypertension: insight from heart rate and arterial pressure variability. Auton Neurosci 90:76–82CrossRefGoogle Scholar
  14. 14.
    Villareal RP, Liu BC, Massumi A (2002) Heart rate variability and cardiovascular mortality. Curr Atheroscler Rep 4:120–127CrossRefGoogle Scholar
  15. 15.
    Galinier M, Pathak A, Fourcade J, Androdias C, Curnier D, Varnous S, Boveda S, Massabuau P, Fauvel M, Senard JM, Bounhoure JP (2000) Depressed low frequency power of heart rate variability as an independent predictor of sudden death in chronic heart failure. Eur Heart J 21:475–482CrossRefGoogle Scholar
  16. 16.
    Kleiger RE, Miller JP, Bigger JT, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:256–262CrossRefGoogle Scholar
  17. 17.
    Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, Baig W, Flapan AD, Cowley A, Prescott RJ, Neilson JM, Fox KA (1998) Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation 98:1510–1516CrossRefGoogle Scholar
  18. 18.
    La Rovere MT, Pinna GD, Maestri R, Mortara A, Capomolla S, Febo O, Ferrari R, Franchini M, Gnemmi M, Opasich C, Riccardi PG, Traversi E, Cobelli F (2003) Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation 107:565–570CrossRefGoogle Scholar
  19. 19.
    Dekker JM, Crow RS, Folsom AR, Hannan PJ, Liao D, Swenne CA, Schouten EG (2000) Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study. Atherosclerosis Risk In Communities. Circulation 102:1239–1244CrossRefGoogle Scholar
  20. 20.
    Tuininga YS, Crijns HJ, Brouwer J, van den Berg MP, Man in ‘t Veld AJ, Mulder G, Lie KI (1995) Evaluation of importance of central effects of atenolol and metoprolol measured by heart rate variability during mental performance tasks, physical exercise, and daily life in stable postinfarct patients. Circulation 92:3415–3423CrossRefGoogle Scholar
  21. 21.
    Lurje L, Wennerblom B, Tygesen H, Karlsson T, Hjalmarson A (1997) Heart rate variability after acute myocardial infarction in patients treated with atenolol and metoprolol. Int J Cardiol 60:157–164CrossRefGoogle Scholar
  22. 22.
    Benichou T, Pereira B, Mermillod M, Pfabigan D, Dutheil F (2018) Heart rate variability in type 2 diabetes mellitus: a systematic review and meta-analysis. PLoS One 13(4):e0195166CrossRefGoogle Scholar
  23. 23.
    Verloop WL, Spiering W, Vink EE, Beeftink MMA, Blankestijn PJ, Doevendans PA, Voskuil M (2015) Denervation of the renal arteries in metabolic syndrome: the DREAMS-study. Hypertension 65:751–757CrossRefGoogle Scholar
  24. 24.
    de Jong MR, Hoogerwaard AF, Gal P, Adiyaman A, Smit JJ, Delnoy PP, Ramdat Misier AR, van Hasselt BA, Heeg JE, le Polain de Waroux JB, Lau EO, Staessen JA, Persu A, Elvan A (2016) Persistent increase in blood pressure after renal nerve stimulation in accessory renal arteries after sympathetic renal denervation. Hypertension 67:1211–1217CrossRefGoogle Scholar
  25. 25.
    Draghici AE, Taylor JA (2016) The physiological basis and measurement of heart rate variability in humans. J Physiol Anthropol 35:22CrossRefGoogle Scholar
  26. 26.
    Sztajzel J (2004) Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med Wkly 134:514–522Google Scholar
  27. 27.
    Koizumi K, Terui N, Kollai M (1985) Effect of cardiac vagal and sympathetic nerve activity on heart rate in rhythmic fluctuations. J Auton Nerv Syst 12:251–259CrossRefGoogle Scholar
  28. 28.
    Head GA, McCarty R (1987) Vagal and sympathetic components of the heart rate range and gain of the baroreceptor-heart rate reflex in conscious rats. J Auton Nerv Syst 21:203–213CrossRefGoogle Scholar
  29. 29.
    Elghozi J-L, Julien C (2007) Sympathetic control of short-term heart rate variability and its pharmacological modulation. Fundam Clin Pharmacol 21:337–347CrossRefGoogle Scholar
  30. 30.
    Vinik AI, Maser RE, Mitchell BD, Freeman R (2003) Diabetic autonomic neuropathy. Diabetes Care 26:1553–1579 (Review) CrossRefGoogle Scholar
  31. 31.
    Wargon M, Laude D, Girard A, Elghozi JL (1998) Acute effects of bisoprolol on respiratory sinus arrhythmia. Fundam Clin Pharmacol 12:451–456CrossRefGoogle Scholar
  32. 32.
    Parati G, Mutti E, Frattola A, Castiglioni P, di Rienzo M, Mancia G (1994) Beta-adrenergic blocking treatment and 24-hour baroreflex sensitivity in essential hypertensive patients. Hypertension 23:992–996CrossRefGoogle Scholar
  33. 33.
    Jung O, Gechter JL, Wunder C, Paulke A, Bartel C, Geiger H, Toennes SW (2013) Resistant hypertension? Assessment of adherence by toxicological urine analysis. J Hypertens 31:766–774CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Annemiek F. Hoogerwaard
    • 1
  • Mark R. de Jong
    • 1
  • Ahmet Adiyaman
    • 1
  • Jaap Jan J. Smit
    • 1
  • Peter Paul H. M. Delnoy
    • 1
  • Jan-Evert Heeg
    • 2
  • Boudewijn A. A. M. van Hasselt
    • 3
  • Anand R. Ramdat Misier
    • 1
  • Michiel Rienstra
    • 4
  • Isabelle C. van Gelder
    • 4
  • Arif Elvan
    • 1
    Email author
  1. 1.Department of CardiologyIsala HospitalZwolleThe Netherlands
  2. 2.Department of Internal MedicineIsala HospitalZwolleThe Netherlands
  3. 3.Department of RadiologyIsala HospitalZwolleThe Netherlands
  4. 4.Department of CardiologyUniversity Medical CentreGroningenThe Netherlands

Personalised recommendations