Advertisement

Clinical Research in Cardiology

, Volume 108, Issue 2, pp 119–132 | Cite as

Body mass index and all-cause mortality in heart failure patients with normal and reduced ventricular ejection fraction: a dose–response meta-analysis

  • Jufen ZhangEmail author
  • Aine Begley
  • Ruth Jackson
  • Michael Harrison
  • Pierpaolo Pellicori
  • Andrew L. Clark
  • John G. F. Cleland
Review
  • 175 Downloads

Abstract

Background

For patients with heart failure, there is an inverse relation between body mass index (BMI) and mortality, sometimes called the obesity-paradox. However, the relationship might be either U- or J-shaped and might differ between patients with reduced (HFrEF) or preserved left ventricular ejection fraction (HFpEF). We sought to investigate this further in a dose–response meta-analysis of published studies.

Methods

PubMed and Embase from June 1980 to April 2017 were searched for prospective cohort studies evaluating associations between BMI and all-cause mortality in patients with HFrEF (LVEF < 40%) or HFpEF (LVEF ≥ 50%). Summary estimated effect sizes were obtained by using a random-effects model. Potential non-linear relationships were evaluated by using random-effects restricted cubic spline models.

Results

Ten studies were identified that included 96,424 patients of whom 59,263 had HFpEF (mean age 68 years of whom 38% were women) and 37,161 had HFrEF (mean age 60 years of whom 17% were women). For patients with HFpEF, the summary hazard ratio (HR) for all-cause mortality was: 0.93 (95% CI 0.89–0.97) per 5 units increase in BMI (I2 = 75.8%, p for heterogeneity = 0.01 and Begg’s test, p = 1.0, Egger’s test, p = 0.29) but the association was U-shaped (p for non-linearity < 0.01) with the nadir of risk at a BMI of 32–33 kg/m2. For patients with HFrEF, the summary HR for all-cause mortality was: 0.96 (95% CI 0.92–0.99) (I2 = 95%, p for heterogeneity < 0.001 and Begg’s test, p = 0.45, Egger’s test, p = 0.01). The relationship was also U-shaped (p < 0.01), although ‘flatter’ than for HFpEF, with the nadir at a BMI of 33 kg/m2.

Conclusions

For patients with heart failure, the relation between BMI and mortality is U-shaped with a similar nadir of risk for HFpEF and HFrEF at a BMI of 32–33 kg/m2. Whether interventions that alter weight in either direction can alter risk is unknown.

Keywords

HFrEF HFpEF Dose–response meta-analysis BMI Mortality 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Horwich TB, Fonarow GC, Hamilton MA, MacLellan WR, Woo MA, Tillisch JH (2001) The relationship between obesity and mortality in patients with heart failure. J Am Coll Cardiol 38(3):789–95CrossRefGoogle Scholar
  2. 2.
    Osman AF, Mehra MR, Lavie CJ, Nunez E, Milani RV (2000) The incremental prognostic importance of body fat adjusted peak oxygen consumption in chronic heart failure. J Am Coll Cardiol 36(7):2126–2131CrossRefGoogle Scholar
  3. 3.
    Kapoor JR, Heidenreich PA (2010) Obesity and survival in patients with heart failure and preserved systolic function: a U-shaped relationship. Am Heart J 159(1):75–80CrossRefGoogle Scholar
  4. 4.
    Oreopoulos A, Padwal R, Kalantar-Zadeh K, Fonarow GC, Norris CM, McAlister FA (2008) Body mass index and mortality in heart failure: a meta-analysis. Am Heart J 156(1):13–22CrossRefGoogle Scholar
  5. 5.
    Zamora E, Lupon J, Urrutia A, Gonzalez B, Mas D, Pascual T, Domingo M, Valle V (2007) Does body mass index influence mortality in patients with heart failure?. Rev Esp Cardiol 60(11):1127–1134CrossRefGoogle Scholar
  6. 6.
    Shah RV, Murthy VL, Abbasi SA, Blankstein R, Kwong RY, Goldfine AB, Jerosch-Herold M, Lima JA, Ding J, Allison MA (2014) Visceral adiposity and the risk of metabolic syndrome across body mass index: the MESA Study. JACC Cardiovasc Imaging 7(12):1221–1235CrossRefGoogle Scholar
  7. 7.
    Clark AL, Coats AJS, Krum H, Katus HA, Mohacsi P, Salekin D, Schultz MK, Packer M, Anker SD (2017) Effect of beta-adrenergic blockade with carvedilol on cachexia in severe chronic heart failure: results from the COPERNICUS trial. J Cachexia Sarcopenia Muscle 8(4):549–556CrossRefGoogle Scholar
  8. 8.
    Padwal R, McAlister FA, McMurray JJ, Cowie MR, Rich M, Pocock S, Swedberg K, Maggioni A, Gamble G, Ariti C, Earle N, Whalley G, Poppe KK, Doughty RN, Bayes-Genis A (2014) Meta-analysis Global Group in Chronic Heart F. The obesity paradox in heart failure patients with preserved versus reduced ejection fraction: a meta-analysis of individual patient data. Int J Obes (Lond) 38(8):1110–1114CrossRefGoogle Scholar
  9. 9.
    Somaratne JB, Berry C, McMurray JJ, Poppe KK, Doughty RN, Whalley GA (2009) The prognostic significance of heart failure with preserved left ventricular ejection fraction: a literature-based meta-analysis. Eur J Heart Fail 11(9):855–62CrossRefGoogle Scholar
  10. 10.
    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational Studies in Epidemiology (MOOSE) group. JAMA 283(15):2008–2012CrossRefGoogle Scholar
  11. 11.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Open Med 3(3):e123-30Google Scholar
  12. 12.
    Organization WH (2009) Principles for modelling dose–response for the risk assessment of chemicals. World Health Organization, GenevaGoogle Scholar
  13. 13.
    Shah R, Gayat E, Januzzi JL Jr, Sato N, Cohen-Solal A, diSomma S, Fairman E, Harjola VP, Ishihara S, Lassus J, Maggioni A, Metra M, Mueller C, Mueller T, Parenica J, Pascual-Figal D, Peacock WF, Spinar J, van Kimmenade R, Mebazaa A, Network G (2014) Body mass index and mortality in acutely decompensated heart failure across the world: a global obesity paradox. J Am Coll Cardiol 63(8):778–85CrossRefGoogle Scholar
  14. 14.
    Bozkurt B, Deswal A (2005) Obesity as a prognostic factor in chronic symptomatic heart failure. Am Heart J 150(6):1233–1239CrossRefGoogle Scholar
  15. 15.
    Hamaguchi S, Tsuchihashi-Makaya M, Kinugawa S, Goto D, Yokota T, Goto K, Yamada S, Yokoshiki H, Takeshita A, Tsutsui H, Investigators J-C (2010) Body mass index is an independent predictor of long-term outcomes in patients hospitalized with heart failure in Japan. Circ J 74(12):2605–2611CrossRefGoogle Scholar
  16. 16.
    Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose–response data, with applications to meta-analysis. Am J Epidemiol 135(11):1301–1309CrossRefGoogle Scholar
  17. 17.
    Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D (2012) Meta-analysis for linear and nonlinear dose–response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 175(1):66–73CrossRefGoogle Scholar
  18. 18.
    Orsini N (2009) From floated to conventional confidence intervals for the relative risks based on published dose–response data. Comput Methods Programs Biomed 88(1):90–93CrossRefGoogle Scholar
  19. 19.
    Clark AL, Fonarow GC, Horwich TB (2015) Impact of cardiorespiratory fitness on the obesity paradox in patients with systolic heart failure. Am J Cardiol 115(2):209–13CrossRefGoogle Scholar
  20. 20.
    Orsini NBR, Greenland S (2006) Generalized least squares for trend estimation of summarized dose–response data. Stat J 6:40–57CrossRefGoogle Scholar
  21. 21.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558CrossRefGoogle Scholar
  22. 22.
    Begg CBMM. (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101CrossRefGoogle Scholar
  23. 23.
    Egger MDSG., Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634CrossRefGoogle Scholar
  24. 24.
    De Schutter A, Lavie CJ, Kachur S, Patel DA, Milani RV (2014) Body composition and mortality in a large cohort with preserved ejection fraction: untangling the obesity paradox. Mayo Clin Proc 89(8):1072–1079CrossRefGoogle Scholar
  25. 25.
    Wu AH, Eagle KA, Montgomery DG, Kline-Rogers E, Hu YC, Aaronson KD (2009) Relation of body mass index to mortality after development of heart failure due to acute coronary syndrome. Am J Cardiol 103(12):1736–1740CrossRefGoogle Scholar
  26. 26.
    Vest AR, Wu Y, Hachamovitch R, Young JB, Cho L (2015) The heart failure overweight/obesity survival paradox: the missing sex link. JACC Heart Fail 3(11):917–26CrossRefGoogle Scholar
  27. 27.
    Haass M, Kitzman DW, Anand IS, Miller A, Zile MR, Massie BM, Carson PE (2011) Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: results from the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circ Heart Fail 4(3):324–31CrossRefGoogle Scholar
  28. 28.
    Curtis JP, Selter JG, Wang Y, Rathore SS, Jovin IS, Jadbabaie F, Kosiborod M, Portnay EL, Sokol SI, Bader F, Krumholz HM (2005) The obesity paradox: body mass index and outcomes in patients with heart failure. Arch Intern Med 165(1):55–61CrossRefGoogle Scholar
  29. 29.
    Zafrir B, Goren Y, Salman N, Amir O (2015) Comparison of body mass index and body surface area as outcome predictors in patients with systolic heart failure. Cardiol J 22(4):375–81CrossRefGoogle Scholar
  30. 30.
    McAuley P, Myers J, Abella J, Froelicher V (2007) Body mass, fitness and survival in veteran patients: another obesity paradox? Am J Med 120(6):518–24CrossRefGoogle Scholar
  31. 31.
    Alpert MA (2016) Severe obesity and acute decompensated heart failure: new insights into prevalence and prognosis. JACC Heart Fail 4(12):932–934CrossRefGoogle Scholar
  32. 32.
    Agarwal SK, Chambless LE, Ballantyne CM, Astor B, Bertoni AG, Chang PP, Folsom AR, He M, Hoogeveen RC, Ni H, Quibrera PM, Rosamond WD, Russell SD, Shahar E, Heiss G (2012) Prediction of incident heart failure in general practice: the Atherosclerosis Risk in Communities (ARIC) Study. Circ Heart Fail 5(4):422–429CrossRefGoogle Scholar
  33. 33.
    Miro O, Gil VI, Martin-Sanchez FJ, Jacob J, Herrero P, Alquezar A, Llauger L, Aguilo S, Martinez G, Rios J, Dominguez-Rodriguez A, Harjola VP, Muller C, Parissis J, Peacock WF, Llorens P (2018) Research Group on Acute Heart Failure of the Spanish Society of Emergency Medicine R. Short-term outcomes of heart failure patients with reduced and preserved ejection fraction after acute decompensation according to the final destination after emergency department care. Clin Res Cardiol.  https://doi.org/10.1007/s00392-018-1237-z Google Scholar
  34. 34.
    Tschope C, Birner C, Bohm M, Bruder O, Frantz S, Luchner A, Maier L, Stork S, Kherad B, Laufs U (2018) Heart failure with preserved ejection fraction: current management and future strategies: Expert opinion on the behalf of the Nucleus of the “Heart Failure Working Group” of the German Society of Cardiology (DKG). Clin Res Cardiol 107(1):1–19CrossRefGoogle Scholar
  35. 35.
    Chau K, Girerd N, Magnusson M, Lamiral Z, Bozec E, Merckle L, Leosdottir M, Bachus E, Frikha Z, Ferreira JP, Despres JP, Rossignol P, Boivin JM, Zannad F (2018) Obesity and metabolic features associated with long-term developing diastolic dysfunction in an initially healthy population-based cohort. Clin Res Cardiol.  https://doi.org/10.1007/s00392-018-1259-6 Google Scholar
  36. 36.
    Sze S, Pellicori P, Kamzi S, Anton A, Clark AL (2018) Effect of beta-adrenergic blockade on weight changes in patients with chronic heart failure. Int J Cardiol 264:104–112CrossRefGoogle Scholar
  37. 37.
    Oldenburg O, Wellmann B, Bitter T, Fox H, Buchholz A, Freiwald E, Horstkotte D, Wegscheider K (2018) Adaptive servo-ventilation to treat central sleep apnea in heart failure with reduced ejection fraction: the Bad Oeynhausen prospective ASV registry. Clin Res Cardiol.  https://doi.org/10.1007/s00392-018-1239-x Google Scholar
  38. 38.
    Streng KW, Voors AA, Hillege HL, Anker SD, Cleland JG, Dickstein K, Filippatos G, Metra M, Ng LL, Ponikowski P, Samani NJ, van Veldhusen DJ, Zwinderman AH, Zannad F, Damman K, van der Meer P, Lang CC (2018) Waist–hip ratio and mortality in heart failure. Eur J Heart Fail (In press) Google Scholar
  39. 39.
    Ebong IA, Goff DC Jr, Rodriguez CJ, Chen H, Bertoni AG (2014) Mechanisms of heart failure in obesity. Obes Res Clin Pract 8(6):e540–e548CrossRefGoogle Scholar
  40. 40.
    Backhaus T, Fach A, Schmucker J, Fiehn E, Garstka D, Stehmeier J, Hambrecht R, Wienbergen H (2018) Management and predictors of outcome in unselected patients with cardiogenic shock complicating acute ST-segment elevation myocardial infarction: results from the Bremen STEMI Registry. Clin Res Cardiol 107(5):371–379CrossRefGoogle Scholar
  41. 41.
    Stiermaier T, Santoro F, Graf T, Guastafierro F, Tarantino N, De Gennaro L, Caldarola P, Di Biase M, Thiele H, Brunetti ND, Moller C, Eitel I (2018) Prognostic value of N-terminal Pro-B-type natriuretic peptide in Takotsubo syndrome. Clin Res Cardiol.  https://doi.org/10.1007/s00392-018-1227-1 Google Scholar
  42. 42.
    Clark AL, Chyu J, Horwich TB (2012) The obesity paradox in men versus women with systolic heart failure. Am J Cardiol 110(1):77–82CrossRefGoogle Scholar
  43. 43.
    Fonarow GC, Srikanthan P, Costanzo MR, Cintron GB, Lopatin M, Committee ASA (2007) Investigators. An obesity paradox in acute heart failure: analysis of body mass index and inhospital mortality for 108,927 patients in the Acute Decompensated Heart Failure National Registry. Am Heart J 153(1):74–81CrossRefGoogle Scholar
  44. 44.
    Abdin A, Poss J, Fuernau G, Ouarrak T, Desch S, Eitel I, de Waha S, Zeymer U, Bohm M, Thiele H (2018) Revision: prognostic impact of baseline glucose levels in acute myocardial infarction complicated by cardiogenic shock-a substudy of the IABP-SHOCK II-trial. Clin Res Cardiol.  https://doi.org/10.1007/s00392-018-1213-7 Google Scholar
  45. 45.
    Shah M, Patnaik S, Patel B, Ram P, Garg L, Agarwal M, Agrawal S, Arora S, Patel N, Wald J, Jorde UP (2018) Trends in mechanical circulatory support use and hospital mortality among patients with acute myocardial infarction and non-infarction related cardiogenic shock in the United States. Clin Res Cardiol 107(4):287–303CrossRefGoogle Scholar
  46. 46.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Group ESCSD (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200CrossRefGoogle Scholar
  47. 47.
    Shah RV, Abbasi SA, Yamal JM, Davis BR, Barzilay J, Einhorn PT, Goldfine AB, Group ACR (2014) Impaired fasting glucose and body mass index as determinants of mortality in ALLHAT: is the obesity paradox real? J Clin Hypertens (Greenwich) 16(6):451–458CrossRefGoogle Scholar
  48. 48.
    Costanzo P, Cleland JG, Pellicori P, Clark AL, Hepburn D, Kilpatrick ES, Perrone-Filardi P, Zhang J, Atkin SL (2015) The obesity paradox in type 2 diabetes mellitus: relationship of body mass index to prognosis: a cohort study. Ann Intern Med 162(9):610–618CrossRefGoogle Scholar
  49. 49.
    Sinning C, Ojeda F, Wild PS, Schnabel RB, Schwarzl M, Ohdah S, Lackner KJ, Pfeiffer N, Michal M, Blettner M, Munzel T, Kempf T, Wollert KC, Kuulasmaa K, Blankenberg S, Salomaa V, Westermann D, Zeller T (2017) Midregional proadrenomedullin and growth differentiation factor-15 are not influenced by obesity in heart failure patients. Clin Res Cardiol 106(6):401–410CrossRefGoogle Scholar
  50. 50.
    Sandhu RK, Ezekowitz J, Andersson U, Alexander JH, Granger CB, Halvorsen S, Hanna M, Hijazi Z, Jansky P, Lopes RD, Wallentin L (2016) The ‘obesity paradox’ in atrial fibrillation: observations from the ARISTOTLE (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation) trial. Eur Heart J 37(38):2869–2878CrossRefGoogle Scholar
  51. 51.
    Abdin A, Poss J, Fuernau G, Ouarrak T, Desch S, Eitel I, de Waha S, Zeymer U, Bohm M, Thiele H (2018) Revision: prognostic impact of baseline glucose levels in acute myocardial infarction complicated by cardiogenic shock-a substudy of the IABP-SHOCK II-trial. Clin Res Cardiol 107(6):517–523CrossRefGoogle Scholar
  52. 52.
    Wang ZJ, Zhou YJ, Galper BZ, Gao F, Yeh RW, Mauri L (2015) Association of body mass index with mortality and cardiovascular events for patients with coronary artery disease: a systematic review and meta-analysis. Heart 101(20):1631–1638CrossRefGoogle Scholar
  53. 53.
    Futter JE, Cleland JG, Clark AL (2011) Body mass indices and outcome in patients with chronic heart failure. Eur J Heart Fail 13(2):207–13CrossRefGoogle Scholar
  54. 54.
    Palazzuoli A, Ruocco G, Beltrami M, Nuti R, Cleland JG (2018) Combined use of lung ultrasound, B-type natriuretic peptide, and echocardiography for outcome prediction in patients with acute HFrEF and HFpEF. Clin Res Cardiol.  https://doi.org/10.1007/s00392-018-1221-7 Google Scholar
  55. 55.
    Fu M, Ahrenmark U, Berglund S, Lindholm CJ, Lehto A, Broberg AM, Tasevska-Dinevska G, Wikstrom G, Agard A, Andersson B (2017) All investigators of the HRHFs. Adherence to optimal heart rate control in heart failure with reduced ejection fraction: insight from a survey of heart rate in heart failure in Sweden (HR-HF study). Clin Res Cardiol 106(12):960–973CrossRefGoogle Scholar
  56. 56.
    Kenchaiah S, Pocock SJ, Wang D, Finn PV, Zornoff LA, Skali H, Pfeffer MA, Yusuf S, Swedberg K, Michelson EL, Granger CB, McMurray JJ, Solomon SD, Investigators C (2007) Body mass index and prognosis in patients with chronic heart failure: insights from the Candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) program. Circulation 116(6):627–36CrossRefGoogle Scholar
  57. 57.
    Chan MM, Lam CS (2013) How do patients with heart failure with preserved ejection fraction die? Eur J Heart Fail 15(6):604–13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Medical Science, School of MedicineAnglia Ruskin UniversityChelmsfordUK
  2. 2.Department of Cardiology, Castle Hill HospitalHull York Medical SchoolHullUK
  3. 3.Institute of Health and WellbeingUniversity of GlasgowGlasgowUK

Personalised recommendations