Clinical Research in Cardiology

, Volume 108, Issue 1, pp 6–15 | Cite as

Aortic annulus sizing in stenotic bicommissural non-raphe-type bicuspid aortic valves: reconstructing a three-dimensional structure using only two hinge points

  • Antonio H. Frangieh
  • Jonathan Michel
  • Oliver Deutsch
  • Michael Joner
  • Costanza Pellegrini
  • Tobias Rheude
  • Sabine Bleiziffer
  • Albert Markus KaselEmail author


Bicuspid aortic valve (BAV) anatomy is becoming an increasingly frequently encountered challenge in transcatheter aortic valve implantation (TAVI). Bicommissural non-raphe-type BAV (Sievers and Schmidtke Type 0) is composed morphologically of two aortic cusps with no raphe and is less common than the tricommissural or bicommissural raphe-type configurations. Precise annular sizing is a key step for successful TAVI in BAV. The challenge in bicommissural non-raphe-type BAV is that a three-dimensional structure has to be reconstructed using only two anatomical hinge points. For this reason, available software are limited when it comes to bicommissural non-raphe-type BAV. We propose that manual assessment of the aortic root in bicommissural non-raphe-type BAV using multi-planar reconstruction (MPR) software can be performed successfully by aligning the two available hinge points and measuring the smallest identifiable annular dimensions in the transverse plane (Fig. 1). We identified 12 patients with bicommissural non-raphe-type BAV undergoing TAVI between January 2013 and December 2017 in our high-volume institution. Our novel sizing strategy was employed prospectively in three patients—with good clinical outcomes—and evaluated retrospectively in the remainder (Table 1). No patient suffered a central major vascular complication or required new permanent pacemaker implantation. Device success occurred in all patients except one (post-procedural echocardiographic transvalvular gradient of 23 mmHg). In the retrospectively assessed cases, the novel annulus measure was concordant with the implanted THV size in 7 out of 9 procedures and, importantly, did not overestimate the annulus dimensions in any case. Furthermore, in two balloon-expandable THV cases the new measure may, in retrospect, have prompted consideration of a smaller implant size. To be noted, balloon sizing of the aortic annulus has additional value when selecting the valve size in BAV anatomy. Further prospective validation of this novel MDCT sizing technique is required.


Transcatheter aortic valve implantation TAVI Aortic annulus sizing Bicuspid aortic valve Computed tomography 


Compliance with ethical standards

Conflict of interest

AHF is a proctor and medical consultant for Edwards Lifesciences. AMK is a proctor and medical consultant for and receives research support from Edwards Lifesciences. SB is a proctor and medical consultant for Medtronic. The other authors have no conflict of interest to disclose.

Supplementary material

Supplementary material 1 (MOV 28772 KB)

Supplementary material 2 (MOV 23224 KB)


  1. 1.
    Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39(12):1890–1900CrossRefGoogle Scholar
  2. 2.
    Roberts WC, Ko JM (2005) Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation 111(7):920–925CrossRefGoogle Scholar
  3. 3.
    Popma JJ, Ramadan R (2016) CT imaging of bicuspid aortic valve disease for TAVR. JACC Cardiovasc Imaging 9(10):1159–1163CrossRefGoogle Scholar
  4. 4.
    Sievers HH, Schmidtke C (2007) A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg 133(5):1226–1233CrossRefGoogle Scholar
  5. 5.
    Jilaihawi H, Chen M, Webb J, Himbert D, Ruiz CE, Rodes-Cabau J et al (2016) A bicuspid aortic valve imaging classification for the TAVR era. JACC Cardiovasc Imaging 9(10):1145–1158CrossRefGoogle Scholar
  6. 6.
    Himbert D, Pontnau F, Messika-Zeitoun D, Descoutures F, Detaint D, Cueff C et al (2012) Feasibility and outcomes of transcatheter aortic valve implantation in high-risk patients with stenotic bicuspid aortic valves. Am J Cardiol 110(6):877–883CrossRefGoogle Scholar
  7. 7.
    Siu SC, Silversides CK (2010) Bicuspid aortic valve disease. J Am Coll Cardiol 55(25):2789–2800CrossRefGoogle Scholar
  8. 8.
    Zhao ZG, Jilaihawi H, Feng Y, Chen M (2015) Transcatheter aortic valve implantation in bicuspid anatomy. Nat Rev Cardiol 12(2):123–128CrossRefGoogle Scholar
  9. 9.
    Ng ACT, Wang WYS, Delgado V, Bax JJ (2017) Bicuspid aortic valve disease: new insights. Struct Heart 1(1–2):9–17CrossRefGoogle Scholar
  10. 10.
    Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG et al (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363(17):1597–1607CrossRefGoogle Scholar
  11. 11.
    Adams DH, Popma JJ, Reardon MJ (2014) Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med 371(10):967–968CrossRefGoogle Scholar
  12. 12.
    Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK et al (2016) Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med 374(17):1609–1620CrossRefGoogle Scholar
  13. 13.
    Kochman J, Huczek Z, Scislo P, Dabrowski M, Chmielak Z, Szymanski P et al (2014) Comparison of one- and 12-month outcomes of transcatheter aortic valve replacement in patients with severely stenotic bicuspid versus tricuspid aortic valves (results from a multicenter registry). Am J Cardiol 114(5):757–762CrossRefGoogle Scholar
  14. 14.
    Mylotte D, Lefevre T, Sondergaard L, Watanabe Y, Modine T, Dvir D et al (2014) Transcatheter aortic valve replacement in bicuspid aortic valve disease. J Am Coll Cardiol 64(22):2330–2339CrossRefGoogle Scholar
  15. 15.
    Bauer T, Linke A, Sievert H, Kahlert P, Hambrecht R, Nickenig G et al (2014) Comparison of the effectiveness of transcatheter aortic valve implantation in patients with stenotic bicuspid versus tricuspid aortic valves (from the German TAVI Registry). Am J Cardiol 113(3):518–521CrossRefGoogle Scholar
  16. 16.
    Yousef A, Simard T, Webb J, Rodes-Cabau J, Costopoulos C, Kochman J et al (2015) Transcatheter aortic valve implantation in patients with bicuspid aortic valve: a patient level multi-center analysis. Int J Cardiol 189:282–288CrossRefGoogle Scholar
  17. 17.
    Xie X, Shi X, Xun X, Rao L (2016) Efficacy and safety of transcatheter aortic valve implantation for bicuspid aortic valves: a systematic review and meta-analysis. Ann Thorac Cardiovasc Surg 22(4):203–215CrossRefGoogle Scholar
  18. 18.
    Yoon SH, Lefevre T, Ahn JM, Perlman GY, Dvir D, Latib A et al (2016) Transcatheter aortic valve replacement with early- and new-generation devices in bicuspid aortic valve stenosis. J Am Coll Cardiol 68(11):1195–1205CrossRefGoogle Scholar
  19. 19.
    Phan K, Wong S, Phan S, Ha H, Qian P, Yan TD (2015) Transcatheter aortic valve implantation (TAVI) in patients with bicuspid aortic valve stenosis—systematic review and meta-analysis. Heart Lung Circ 24(7):649–659CrossRefGoogle Scholar
  20. 20.
    Yoon SH, Bleiziffer S, De Backer O, Delgado V, Arai T, Ziegelmueller J et al (2017) Outcomes in transcatheter aortic valve replacement for bicuspid versus tricuspid aortic valve stenosis. J Am Coll Cardiol 69(21):2579–2589CrossRefGoogle Scholar
  21. 21.
    Reardon MJ, Van Mieghem NM, Popma JJ, Kleiman NS, Sondergaard L, Mumtaz M et al (2017) Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med 376(14):1321–1331CrossRefGoogle Scholar
  22. 22.
    Thyregod HG, Steinbruchel DA, Ihlemann N, Nissen H, Kjeldsen BJ, Petursson P et al (2015) Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis: 1-year results from the all-comers NOTION randomized clinical trial. J Am Coll Cardiol 65(20):2184–2194CrossRefGoogle Scholar
  23. 23.
    Kasel AM, Cassese S, Bleiziffer S, Amaki M, Hahn RT, Kastrati A et al (2013) Standardized imaging for aortic annular sizing: implications for transcatheter valve selection. JACC Cardiovasc Imaging 6(2):249–262CrossRefGoogle Scholar
  24. 24.
    Piazza N, de Jaegere P, Schultz C, Becker AE, Serruys PW, Anderson RH (2008) Anatomy of the aortic valvar complex and its implications for transcatheter implantation of the aortic valve. Circ Cardiovasc Interv 1(1):74–81CrossRefGoogle Scholar
  25. 25.
    Holmes DR Jr, Mack MJ, Kaul S, Agnihotri A, Alexander KP, Bailey SR et al (2012) 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement. J Am Coll Cardiol 59(13):1200–1254CrossRefGoogle Scholar
  26. 26.
    Detaint D, Lepage L, Himbert D, Brochet E, Messika-Zeitoun D, Iung B et al (2009) Determinants of significant paravalvular regurgitation after transcatheter aortic valve: implantation impact of device and annulus discongruence. JACC Cardiovasc Interv 2(9):821–827CrossRefGoogle Scholar
  27. 27.
    Tay EL, Gurvitch R, Wijeysinghe N, Nietlispach F, Leipsic J, Wood DA et al (2011) Outcome of patients after transcatheter aortic valve embolization. JACC Cardiovasc Interv 4(2):228–234CrossRefGoogle Scholar
  28. 28.
    Blanke P, Reinohl J, Schlensak C, Siepe M, Pache G, Euringer W et al (2012) Prosthesis oversizing in balloon-expandable transcatheter aortic valve implantation is associated with contained rupture of the aortic root. Circ Cardiovasc Interv 5(4):540–548CrossRefGoogle Scholar
  29. 29.
    Barbanti M, Yang TH, Rodes Cabau J, Tamburino C, Wood DA, Jilaihawi H et al (2013) Anatomical and procedural features associated with aortic root rupture during balloon-expandable transcatheter aortic valve replacement. Circulation 128(3):244–253CrossRefGoogle Scholar
  30. 30.
    Athappan G, Patvardhan E, Tuzcu EM, Svensson LG, Lemos PA, Fraccaro C et al (2013) Incidence, predictors, and outcomes of aortic regurgitation after transcatheter aortic valve replacement: meta-analysis and systematic review of literature. J Am Coll Cardiol 61(15):1585–1595CrossRefGoogle Scholar
  31. 31.
    Ribeiro HB, Webb JG, Makkar RR, Cohen MG, Kapadia SR, Kodali S et al (2013) Predictive factors, management, and clinical outcomes of coronary obstruction following transcatheter aortic valve implantation: insights from a large multicenter registry. J Am Coll Cardiol 62(17):1552–1562CrossRefGoogle Scholar
  32. 32.
    Cerillo AG, Mariani M, Berti S, Glauber M (2012) Sizing the aortic annulus. Ann Cardiothorac Surg 1(2):245–256Google Scholar
  33. 33.
    Badiani S, Bhattacharyya S, Lloyd G (2016) Role of echocardiography before transcatheter aortic valve implantation (TAVI). Curr Cardiol Rep 18(4):38CrossRefGoogle Scholar
  34. 34.
    Siegel RJ, Luo H (2012) Echocardiography in transcatheter aortic valve implantation and mitral valve clip. Korean J Intern Med 27(3):245–261CrossRefGoogle Scholar
  35. 35.
    Altiok E, Koos R, Schroder J, Brehmer K, Hamada S, Becker M et al (2011) Comparison of two-dimensional and three-dimensional imaging techniques for measurement of aortic annulus diameters before transcatheter aortic valve implantation. Heart 97(19):1578–1584CrossRefGoogle Scholar
  36. 36.
    Muraru D, Badano LP, Vannan M, Iliceto S (2012) Assessment of aortic valve complex by three-dimensional echocardiography: a framework for its effective application in clinical practice. Eur Heart J Cardiovasc Imaging 13(7):541–555CrossRefGoogle Scholar
  37. 37.
    Saitoh T, Shiota M, Izumo M, Gurudevan SV, Tolstrup K, Siegel RJ et al (2012) Comparison of left ventricular outflow geometry and aortic valve area in patients with aortic stenosis by 2-dimensional versus 3-dimensional echocardiography. Am J Cardiol 109(11):1626–1631CrossRefGoogle Scholar
  38. 38.
    Wiley BM, Kovacic JC, Basnet S, Makoto A, Chaudhry FA, Kini AS et al (2016) Intraprocedural TAVR annulus sizing using 3D TEE and the “turnaround rule”. JACC Cardiovasc Imaging 9(2):213–215CrossRefGoogle Scholar
  39. 39.
    Tsang W, Bateman MG, Weinert L, Pellegrini G, Mor-Avi V, Sugeng L et al (2012) Accuracy of aortic annular measurements obtained from three-dimensional echocardiography, CT and MRI: human in vitro and in vivo studies. Heart 98(15):1146–1152CrossRefGoogle Scholar
  40. 40.
    Jilaihawi H, Doctor N, Kashif M, Chakravarty T, Rafique A, Makar M et al (2013) Aortic annular sizing for transcatheter aortic valve replacement using cross-sectional 3-dimensional transesophageal echocardiography. J Am Coll Cardiol 61(9):908–916CrossRefGoogle Scholar
  41. 41.
    Bersvendsen JBJ, Urheim S, Aakhus S, Samset E (2014) Automatic measurement of aortic annulus diameter in 3-dimensional transoesophageal echocardiography. BMC Med Imaging 14:31CrossRefGoogle Scholar
  42. 42.
    Mahmood F, Jeganathan J, Saraf R, Shahul S, Swaminathan M, Mackensen GB et al (2016) A practical approach to an intraoperative three-dimensional transesophageal echocardiography examination. J Cardiothorac Vasc Anesth 30(2):470–490CrossRefGoogle Scholar
  43. 43.
    Pawade TA, Newby DE, Dweck MR (2015) Calcification in aortic stenosis: the skeleton key. J Am Coll Cardiol 66(5):561–577CrossRefGoogle Scholar
  44. 44.
    Philip F, Faza NN, Schoenhagen P, Desai MY, Tuzcu EM, Svensson LG et al (2015) Aortic annulus and root characteristics in severe aortic stenosis due to bicuspid aortic valve and tricuspid aortic valves: implications for transcatheter aortic valve therapies. Catheter Cardiovasc Interv 86(2):E88–E98CrossRefGoogle Scholar
  45. 45.
    Otto CM, Kumbhani DJ, Alexander KP, Calhoon JH, Desai MY, Kaul S et al (2017) 2017 ACC expert consensus decision pathway for transcatheter aortic valve replacement in the management of adults with aortic stenosis: a report of the american college of cardiology task force on clinical expert consensus documents. J Am Coll Cardiol 69(10):1313–1346CrossRefGoogle Scholar
  46. 46.
    Queiros S, Dubois C, Morais P, Adriaenssens T, Fonseca JC, Vilaca JL et al (2017) Automatic 3D aortic annulus sizing by computed tomography in the planning of transcatheter aortic valve implantation. J Cardiovasc Comput Tomogr 11(1):25–32CrossRefGoogle Scholar
  47. 47.
    Watanabe Y, Morice MC, Bouvier E, Leong T, Hayashida K, Lefevre T et al (2013) Automated 3-dimensional aortic annular assessment by multidetector computed tomography in transcatheter aortic valve implantation. JACC Cardiovasc Interv 6(9):955–964CrossRefGoogle Scholar
  48. 48.
    Shivaraju A, Thilo C, Ott I, Mayr PN, Schunkert H, von Scheidt W et al (2015) Tools and techniques—clinical: fluoroscopic balloon sizing of the aortic annulus before transcatheter aortic valve replacement (TAVR)—follow the “right cusp rule”. EuroIntervention 11(7):840–842CrossRefGoogle Scholar
  49. 49.
    Frangieh AH, Ott I, Michel J, Shivaraju A, Joner M, Mayr NP et al (2017) Standardized minimalistic transfemoral transcatheter aortic valve replacement (TAVR) using the SAPIEN 3 device: stepwise description, feasibility and safety from a large consecutive single-center single- operator cohort. Struct Heart 1:000–000CrossRefGoogle Scholar
  50. 50.
    Babaliaros VC, Liff D, Chen EP, Rogers JH, Brown RA, Thourani VH et al (2008) Can balloon aortic valvuloplasty help determine appropriate transcatheter aortic valve size? JACC Cardiovasc Interv 1(5):580–586CrossRefGoogle Scholar
  51. 51.
    Frangieh AH, Kasel AM (2017) TAVI in bicuspid aortic valves ‘made easy’. Eur Heart J 38(16):1177–1181CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Antonio H. Frangieh
    • 1
  • Jonathan Michel
    • 1
  • Oliver Deutsch
    • 2
  • Michael Joner
    • 1
    • 3
  • Costanza Pellegrini
    • 1
  • Tobias Rheude
    • 1
  • Sabine Bleiziffer
    • 2
  • Albert Markus Kasel
    • 1
    Email author
  1. 1.Deutsches Herzzentrum München, Klinik für Herz- und KreislauferkrankungenTechnische Universität MünchenMunichGermany
  2. 2.Deutsches Herzzentrum München, Klinik für Herz- und GefäßchirurgieTechnische Universität MünchenMunichGermany
  3. 3.Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart AllianceMunichGermany

Personalised recommendations