Clinical Research in Cardiology

, Volume 107, Issue 4, pp 338–346 | Cite as

Circadian dependence of manual thrombus aspiration benefit in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention

  • Stephane Fournier
  • Olivier Muller
  • Umberto Benedetto
  • Marco Roffi
  • Thomas Pilgrim
  • Franz R. Eberli
  • Hans Rickli
  • Dragana Radovanovic
  • Paul Erne
  • Stéphane Cook
  • Stéphane Noble
  • Rachel Fesselet
  • Andrea Zuffi
  • Sophie Degrauwe
  • PierGiorgio Masci
  • Stephan Windecker
  • Eric Eeckhout
  • Juan F. IglesiasEmail author
  • on behalf on the AMIS Plus Investigators
Original Paper



The clinical benefit of manual thrombus aspiration (TA) during primary percutaneous coronary intervention (PPCI) in patients with ST-segment elevation myocardial infarction (STEMI) remains uncertain. This study assessed the impact of circadian rhythms on the effectiveness of manual TA.

Methods and results

We conducted an observational study of patients enrolled in the Acute Myocardial Infarction in Switzerland Plus registry. STEMI patients undergoing PPCI with (TA group) or without (PCI-alone group) manual TA were divided based on time-of-day symptom onset: group 1 (00:00–05:59), group 2 (06:00–11:59), group 3 (12:00–17:59) and group 4 (18:00–23:59). The primary endpoint was circadian variation of myocardial infarction (MI) size. The secondary endpoint was in-hospital all-cause mortality. Between 2009 and 2014, 3648 patients underwent PPCI (TA, 49%). After propensity-score matching, 2860 patients were included. Minimal myocardial Injury was observed in groups 2 and 3 (peak creatine kinase level group 1, 2723 ± 148 U/l; group 2, 2493 ± 105 U/l; group 3, 2550 ± 106 U/l; group 4, 2952 ± 144 U/l; p = 0.044) in the TA group, whereas no time-of-day dependence was found in PCI-alone group. After periodic sinusoidal regression analysis, a circadian relationship between time-of-day symptom onset and MI size was demonstrated in the TA group (p < 0.001). In-hospital all-cause mortality was 3.4% in the TA group and 4.3% in the PCI-alone group (p = 0.20).


In this large registry of STEMI patients, manual TA did not reduce in-hospital all-cause mortality. Nonetheless, there was a circadian dependence of TA effectiveness with greatest myocardial salvage for patients with symptom onset between 06:00 and 17:59.


Circadian rhythms Primary percutaneous coronary intervention Manual thrombus aspiration Myocardial infarct size 



Acute coronary syndrome


Acute myocardial infarction in Switzerland


Creatine kinase




Myocardial infarction


Percutaneous coronary intervention


Primary percutaneous coronary intervention


ST-segment elevation myocardial infarction


Thrombus aspiration


Thrombolysis In myocardial infarction


Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.


  1. 1.
    Keeley EC, Boura JA, Grines CL (2003) Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet 361:13–20CrossRefPubMedGoogle Scholar
  2. 2.
    Noman A, Egred M, Bagnall A, Spyridopoulos I, Jamieson S, Ahmed J (2012) Impact of thrombus aspiration during primary percutaneous coronary intervention on mortality in ST-segment elevation myocardial infarction. Eur Heart J 33:3054–3061CrossRefPubMedGoogle Scholar
  3. 3.
    de Waha S, Desch S, Eitel I et al (2012) Relationship and prognostic value of microvascular obstruction and infarct size in ST-elevation myocardial infarction as visualized by magnetic resonance imaging. Clin Res Cardiol 101:487–495CrossRefPubMedGoogle Scholar
  4. 4.
    Dong-bao L, Qi H, Zhi L, Shan W, Wei-ying J (2009) Predictors and short-term prognosis of angiographically detected distal embolization after emergency percutaneous coronary intervention for ST-elevation acute myocardial infarction. Clin Res Cardiol 98:773–779CrossRefPubMedGoogle Scholar
  5. 5.
    Svilaas T, Vlaar PJ, van der Horst IC et al (2008) Thrombus aspiration during primary percutaneous coronary intervention. N Engl J Med 358:557–567CrossRefPubMedGoogle Scholar
  6. 6.
    Vlaar PJ, Svilaas T, van der Horst IC et al (2008) Cardiac death and reinfarction after 1 year in the thrombus aspiration during percutaneous coronary intervention in Acute myocardial infarction Study (TAPAS): a 1-year follow-up study. Lancet 371:1915–1920CrossRefPubMedGoogle Scholar
  7. 7.
    Frobert O, Lagerqvist B, Olivecrona GK et al (2013) Thrombus aspiration during ST-segment elevation myocardial infarction. N Engl J Med 369:1587–1597CrossRefPubMedGoogle Scholar
  8. 8.
    Lagerqvist B, Frobert O, Olivecrona GK et al (2014) Outcomes 1 year after thrombus aspiration for myocardial infarction. N Engl J Med 371:1111–1120CrossRefPubMedGoogle Scholar
  9. 9.
    Jolly SS, Cairns JA, Yusuf S et al (2015) Randomized trial of primary PCI with or without routine manual thrombectomy. N Engl J Med 372:1389–1398CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kumbhani DJ, Bavry AA, Desai MY, Bangalore S, Bhatt DL (2013) Role of aspiration and mechanical thrombectomy in patients with acute myocardial infarction undergoing primary angioplasty: an updated meta-analysis of randomized trials. J Am Coll Cardiol 62:1409–1418CrossRefPubMedGoogle Scholar
  11. 11.
    Elgendy IY, Huo T, Bhatt DL, Bavry AA (2015) Is aspiration thrombectomy beneficial in patients undergoing primary percutaneous coronary intervention? Meta-analysis of randomized trials. Circ Cardiovasc Interv 8:e002258CrossRefPubMedGoogle Scholar
  12. 12.
    Harle T, Zeymer U, Hochadel M et al (2015) Use and impact of thrombectomy in primary percutaneous coronary intervention for acute myocardial infarction with persistent ST-segment elevation: results of the prospective ALKK PCI-registry. Clin Res Cardiol 104:803–811CrossRefPubMedGoogle Scholar
  13. 13.
    Virag JA, Lust RM (2014) Circadian influences on myocardial infarction. Front Physiol 5:422CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fournier S, Taffe P, Radovanovic D et al (2015) Myocardial infarct size and mortality depend on the time of day-a large multicenter study. PLoS One 10:e0119157CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Reiter R, Swingen C, Moore L, Henry TD, Traverse JH (2012) Circadian dependence of infarct size and left ventricular function after ST elevation myocardial infarction. Circ Res 110:105–110CrossRefPubMedGoogle Scholar
  16. 16.
    Suarez-Barrientos A, Lopez-Romero P, Vivas D et al (2011) Circadian variations of infarct size in acute myocardial infarction. Heart 97:970–976CrossRefPubMedGoogle Scholar
  17. 17.
    Fournier S, Eeckhout E, Mangiacapra F et al (2012) Circadian variations of ischemic burden among patients with myocardial infarction undergoing primary percutaneous coronary intervention. Am Heart J 163:208–213CrossRefPubMedGoogle Scholar
  18. 18.
    Kurnik PB (1995) Circadian variation in the efficacy of tissue-type plasminogen activator. Circulation 91:1341–1346CrossRefPubMedGoogle Scholar
  19. 19.
    Kono T, Morita H, Nishina T et al (1996) Circadian variations of onset of acute myocardial infarction and efficacy of thrombolytic therapy. J Am Coll Cardiol 27:774–778CrossRefPubMedGoogle Scholar
  20. 20.
    Radovanovic D, Erne P (2010) AMIS plus: swiss registry of acute coronary syndrome. Heart 96:917–921CrossRefPubMedGoogle Scholar
  21. 21.
    Muller JE, Stone PH, Turi ZG et al (1985) Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med 313:1315–1322CrossRefPubMedGoogle Scholar
  22. 22.
    Panza JA, Epstein SE, Quyyumi AA (1991) Circadian variation in vascular tone and its relation to alpha-sympathetic vasoconstrictor activity. N Engl J Med 325:986–990CrossRefPubMedGoogle Scholar
  23. 23.
    Petralito A, Mangiafico RA, Gibiino S, Cuffari MA, Miano MF, Fiore CE (1982) Daily modifications of plasma fibrinogen platelets aggregation, Howell’s time, PTT, TT, and antithrombin II in normal subjects and in patients with vascular disease. Chronobiologia 9:195–201PubMedGoogle Scholar
  24. 24.
    Rea MS, Figueiro MG, Sharkey KM, Carskadon MA (2012) Relationship of morning cortisol to circadian phase and rising time in young adults with delayed sleep times. Int J Endocrinol 2012:749460CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tofler GH, Brezinski D, Schafer AI et al (1987) Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med 316:1514–1518CrossRefPubMedGoogle Scholar
  26. 26.
    Scheer FA, Michelson AD, Frelinger AL 3rd et al (2011) The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors. PLoS One 6:e24549CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Grimaudo V, Hauert J, Bachmann F, Kruithof EK (1988) Diurnal variation of the fibrinolytic system. Thromb Haemost 59:495–499PubMedGoogle Scholar
  28. 28.
    Goldhammer E, Kharash L, Abinader EG (1999) Circadian fluctuations in the efficacy of thrombolysis with streptokinase. Postgrad Med J 75:667–671CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    De Luca G, Suryapranata H, Ottervanger JP et al (2005) Circadian variation in myocardial perfusion and mortality in patients with ST-segment elevation myocardial infarction treated by primary angioplasty. Am Heart J 150:1185–1189CrossRefPubMedGoogle Scholar
  30. 30.
    Durgan DJ, Pulinilkunnil T, Villegas-Montoya C et al (2010) Short communication: ischemia/reperfusion tolerance is time-of-day-dependent: mediation by the cardiomyocyte circadian clock. Circ Res 106:546–550CrossRefPubMedGoogle Scholar
  31. 31.
    Wieringa WG, Lexis CP, Mahmoud KD et al (2014) Time of symptom onset and value of myocardial blush and infarct size on prognosis in patients with ST-elevation myocardial infarction. Chronobiol Int 31:797–806CrossRefPubMedGoogle Scholar
  32. 32.
    Leibundgut G, Gick M, Morel O et al (2016) Discordant cardiac biomarker levels independently predict outcome in ST-segment elevation myocardial infarction. Clin Res Cardiol 105:432–440CrossRefPubMedGoogle Scholar
  33. 33.
    Fournier S, Iten L, Marques-Vidal P et al (2017) Circadian rhythm of blood cardiac troponin T concentration. Clin Res Cardiol 106(12):1026–1032CrossRefPubMedGoogle Scholar
  34. 34.
    Bouma W, Willemsen HM, Lexis CP et al (2016) Chronic ischemic mitral regurgitation and papillary muscle infarction detected by late gadolinium-enhanced cardiac magnetic resonance imaging in patients with ST-segment elevation myocardial infarction. Clin Res Cardiol 105:981–991CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chia S, Senatore F, Raffel OC, Lee H, Wackers FJ, Jang IK (2008) Utility of cardiac biomarkers in predicting infarct size, left ventricular function, and clinical outcome after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 1:415–423CrossRefPubMedGoogle Scholar
  36. 36.
    Kleber FX, Rittger H, Ludwig J et al (2016) Drug eluting balloons as stand alone procedure for coronary bifurcational lesions: results of the randomized multicenter PEPCAD-BIF trial. Clin Res Cardiol 105:613–621CrossRefPubMedGoogle Scholar
  37. 37.
    Ferenc M, Buettner HJ, Gick M et al (2016) Clinical outcome after percutaneous treatment of de novo coronary bifurcation lesions using first or second generation of drug-eluting stents. Clin Res Cardiol 105:230–238CrossRefPubMedGoogle Scholar
  38. 38.
    van der Heijden LC, Kok MM, Lam MK et al (2016) Bifurcation treatment with novel, highly flexible drug-eluting coronary stents in all-comers: 2-year outcome in patients of the DUTCH PEERS trial. Clin Res Cardiol 105:206–215CrossRefPubMedGoogle Scholar
  39. 39.
    Ong P, Sechtem U (2016) Controversies in the treatment of patients with STEMI and multivessel disease: is it time for PCI of all lesions? Clin Res Cardiol 105:467–470CrossRefPubMedGoogle Scholar
  40. 40.
    de Waha S, Eitel I, Desch S et al (2015) Intravenous morphine administration and reperfusion success in ST-elevation myocardial infarction: insights from cardiac magnetic resonance imaging. Clin Res Cardiol 104:727–734CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Stephane Fournier
    • 1
  • Olivier Muller
    • 1
  • Umberto Benedetto
    • 2
  • Marco Roffi
    • 3
  • Thomas Pilgrim
    • 4
  • Franz R. Eberli
    • 5
  • Hans Rickli
    • 6
  • Dragana Radovanovic
    • 7
  • Paul Erne
    • 8
  • Stéphane Cook
    • 9
  • Stéphane Noble
    • 3
  • Rachel Fesselet
    • 1
  • Andrea Zuffi
    • 1
  • Sophie Degrauwe
    • 1
  • PierGiorgio Masci
    • 1
  • Stephan Windecker
    • 4
  • Eric Eeckhout
    • 1
  • Juan F. Iglesias
    • 1
    Email author
  • on behalf on the AMIS Plus Investigators
  1. 1.Department of CardiologyLausanne University HospitalLausanneSwitzerland
  2. 2.Bristol Heart InstituteUniversity of BristolBristolUK
  3. 3.Division of CardiologyUniversity HospitalGenevaSwitzerland
  4. 4.Department of CardiologyBern University HospitalBernSwitzerland
  5. 5.Department of CardiologyTriemli HospitalZurichSwitzerland
  6. 6.Division of CardiologyKantonsspital St. GallenSt. GallenSwitzerland
  7. 7.AMIS Plus Data CenterUniversity of ZurichZurichSwitzerland
  8. 8.Laboratory of Signal Transduction, Department of BiomedicineBasel University HospitalBaselSwitzerland
  9. 9.Department of CardiologyUniversity HospitalFribourgSwitzerland

Personalised recommendations