Advertisement

Clinical Research in Cardiology

, Volume 105, Issue 6, pp 471–481 | Cite as

Long-term intravenous inotropes in low-output terminal heart failure?

  • Wolfgang von ScheidtEmail author
  • Matthias Pauschinger
  • Georg Ertl
Critical Perspective

Abstract

Intravenous inotropic therapy may be necessary to achieve short-term survival in end-stage heart failure patients with cardiogenic shock or extreme low output and severe organ hypoperfusion. However, mid- or long-term intravenous inotropic therapy is associated with an increased mortality in advanced stage D heart failure patients using β-adrenoceptor agonists (dobutamine) or PDE-3-inhibitors (milrinone). Intermittent levosimendan may evolve as a reasonable therapeutic option. Randomized trials or other meaningful scientific evidence addressing the optimal treatment of exclusively the most threatened subgroup of hospitalized patients with persistent severe organ hypoperfusion are missing, but urgently needed. Despite a lack of other beneficial pharmacological options, the use of long-term intravenous inotropic therapy as a treatment for refractory heart failure or as an obligatory criterion for high urgency (HU) listing of heart transplant candidates with a median waiting time of 66 days in Germany is not based on scientific evidence. In addition, it might create a disincentive to achieve the HU status as well as keeping it, thereby potentially exposing the patient to an unnecessary additional risk. Upcoming new allocation algorithms may possibly help to improve the inadequate present situation. There is need for both, a better definition and a better treatment of high risk terminal heart failure requiring high urgent transplant listing.

Keywords

Low-output heart failure Inotropic therapy Dobutamine Milrinone Levosimendan High urgency heart transplant listing 

Notes

Compliance with ethical standards

Conflict of interest

All authors do not have a conflict of interest.

References

  1. 1.
    McMurray JJV, Adamopoulos S, Anker SD et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 33:1787–1847CrossRefPubMedGoogle Scholar
  2. 2.
    Yancy CW, Jessup M, Bozkurt B et al (2013) 2013 ACCF/AHA guideline for the management of heart failure. Circulation 128:e240–e327CrossRefPubMedGoogle Scholar
  3. 3.
    Mebazaa A, Yilmaz MB, Levy P et al (2015) Recommendations on pre-hospital & early hospital management of acute heart failure: a consensus paper from the Heart Failure Association of the European Society of Cardiology, the European Society of Emergency Medicine and the Society of Academic Emergency Medicine. Eur J Heart Fail 17:544–558CrossRefPubMedGoogle Scholar
  4. 4.
    Francis GS, Bartos JA, Adatya S (2014) Inotropes. J Am Coll Cardiol 63:2069–2078CrossRefPubMedGoogle Scholar
  5. 5.
    Böhm M (1998) Catecholamine refractoriness and their mechanisms in cardiocirculatory shock and chronic heart failure. Thorac Cardiovasc Surg 46:270–276CrossRefPubMedGoogle Scholar
  6. 6.
    Hausdorff WP, Caron MG, Lefkowitz RJ (1990) Turning off the signal: desensitization of β-adrenergic receptor function. FASEB J 4:2881–2889PubMedGoogle Scholar
  7. 7.
    Bristow MR, Ginsburg R, Minobe W et al (1982) Decreased catecholamine sensitivity and β-adrenergic receptor density in failing human hearts. N Engl J Med 307:205–211CrossRefPubMedGoogle Scholar
  8. 8.
    Böhm M, Beuckelmann D, Brown L et al (1988) Reduction of beta-adrenoceptor density and evaluation of positive inotropic responses in isolated, diseased human myocardium. Eur Heart J 9:844–852PubMedGoogle Scholar
  9. 9.
    Bristow MR, Ginsburg R, Umans V et al (1986) β1- and β2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective β1-receptor down-regulation in heart failure. Circ Res 59:297–309CrossRefPubMedGoogle Scholar
  10. 10.
    Brodde OE (1991) β1- and β2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 43:203–242PubMedGoogle Scholar
  11. 11.
    Kashihara T, Hirose M, Shimoio H et al (2014) β2-Adrenergic and M2-muscarinic receptors decrease basal t-tubular L-type calcium channel activity and suppress ventricular contractility in heart failure. Eur J Pharmacol 724:122–131CrossRefPubMedGoogle Scholar
  12. 12.
    Böhm M, Kirchmayr R, Erdmann E (1995) Myocardial Gi-alpha-protein levels in patients with hypertensive cardiac hypertrophy, ischemic heart disease and cardiogenic shock. Cardiovasc Res 30:611–618PubMedGoogle Scholar
  13. 13.
    Böhm M, Gierschik P, Jakobs K-H et al (1990) Increase of Gi-alpha in human hearts with dilated but not ischemic cardiomyopathy. Circulation 82:1249–1265CrossRefPubMedGoogle Scholar
  14. 14.
    Böhm M, La Rosée K, Schwinger RHG, Erdmann E (1995) Evidence for reduction of norepinephrine uptake sites in the failing human heart. J Am Coll Cardiol 25:146–153CrossRefPubMedGoogle Scholar
  15. 15.
    Unverferth DV, Blanford M, Kates RE, Leier CV (1980) Tolerance to dobutamine after a 72-hour continuous infusion. Am J Med 69:262–266CrossRefPubMedGoogle Scholar
  16. 16.
    Thackray S, Easthaugh J, Freemantle N, Cleland JGF (2002) The effectiveness and relative effectiveness of intravenous inotropic drugs acting through the adrenergic pathway in patients with heart failure—a meta-regression analysis. Eur J Heart Fail 4:515–529CrossRefPubMedGoogle Scholar
  17. 17.
    Tacon CL, McCaffrey J, Delaney A (2012) Dobutamine for patients with severe heart failure: a systematic review and meta-analysis of randomized controlled trials. Intensive Care Med 38:359–367CrossRefPubMedGoogle Scholar
  18. 18.
    Nielsen DV, Algotsson L (2015) Outcome of inotropic therapy: is less always more? Curr Opin Anesthesiol 28(2):159–164CrossRefGoogle Scholar
  19. 19.
    Metra M, Bettari L, Carubelli V, Dei Cas L (2011) Old and new intravenous inotropic agents in the treatment of advanced heart failure. Prog Cardiovasc Dis 54:97–106CrossRefPubMedGoogle Scholar
  20. 20.
    Metra M, Bettari L, Carubelli V et al (2011) Use of inotropic agents in patients with advanced heart failure. Drugs 71(5):515–525CrossRefPubMedGoogle Scholar
  21. 21.
    Abraham WT, Adams KF, Fonarow GC et al (2005) In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications. J Am Coll Cardiol 46:57–64CrossRefPubMedGoogle Scholar
  22. 22.
    Kalogeropoulos AP, Marti CN, Georgiopoulou VV et al (2014) Inotrope use and outcomes among patients hospitalized for heart failure: impact of systolic blood pressure, cardiac index, and etiology. J Card Fail 20:593–601CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Elkayam U, Tasissa G, Binanay C et al (2007) Use and impact of inotropes and vasodilator therapy in hospitalized patients with severe heart failure. Am Heart J 153:98–104CrossRefPubMedGoogle Scholar
  24. 24.
    Allen LA, Fonarow GC, Grau-Sepulveda MV et al (2014) Hospital variation in intravenous inotrope use for patients hospitalized with heart failure: insights from get with the guidelines. Circ Heart Fail 7:251–260CrossRefPubMedGoogle Scholar
  25. 25.
    Nony P, Boissel J-P, Lievre M et al (1994) Evaluation of the effect of phosphodiesterase inhibitors on mortality in chronic heart failure patients. Eur J Clin Pharmacol 46:191–196CrossRefPubMedGoogle Scholar
  26. 26.
    Nieminen MS, Altenberger J, Ben-Gal T et al (2014) Repetitive use of levosimendan for treatment of chronic advanced heart failure: clinical evidence, practical considerations, and perspectives: An expert panel consensus. Int J Cardiol 174:360–367CrossRefPubMedGoogle Scholar
  27. 27.
    De Luca L (2014) Inotropic agents in advanced heart failure: repetita iuvant? Int J Cardiol 176:6–7CrossRefPubMedGoogle Scholar
  28. 28.
    Leier CV, Huss P, Lewis RP, Unverferth DV (1982) Drug-induced conditioning in congestive heart failure. Circulation 65:1382–1387CrossRefPubMedGoogle Scholar
  29. 29.
    Liang CS, Sherman LG, Doherty JU et al (1984) Sustained improvement of cardiac function in patients with congestive heart failure after short-term infusion of dobutamine. Circulation 69:113–119CrossRefPubMedGoogle Scholar
  30. 30.
    Dies F, Krell MJ, Whitlow P et al (1986) Intermittent dobutamine in ambulatory outpatients with chronic heart failure. Circulation 74:II–38Google Scholar
  31. 31.
    Erlemeier HH, Kupper W, Bleifeld W (1992) Intermittent infusion of dobutamine in the therapy of severe congestive heart failure—long-term effects and lack of tolerance. Cardiovasc Drugs Ther 6:391–398CrossRefPubMedGoogle Scholar
  32. 32.
    Adamopoulos S, Piepoli M, Qiang F et al (1995) Effects of pulsed beta-stimulant therapy on beta-adrenoceptors and chronotropic responsiveness in chronic heart failure. Lancet 345:344–349CrossRefPubMedGoogle Scholar
  33. 33.
    Elis A, Bental T, Kimchi O et al (1998) Intermittent dobutamine treatment in patients with chronic refractory congestive heart failure: a randomized, double-blind, placebo-controlled study. Clin Pharmacol Ther 63:682–685CrossRefPubMedGoogle Scholar
  34. 34.
    Sindone AP, MacDonald PS, Keogh AM (1998) Hemodynamic, neurohumoral and symptomatic effects of dobutamine, dopamine and milrinone in severe heart failure. Aust N Z J Med 28:113 (abstract) Google Scholar
  35. 35.
    Oliva F, Latini R, Politi A et al (1999) Intermittent 6-month low-dose dobutamine infusion in severe heart failure: DICE multicenter trial. Am Heart J 138:247–253CrossRefPubMedGoogle Scholar
  36. 36.
    Wimmer A, Stanek B, Kubecova L et al (1999) Effects of prostaglandin E1, dobutamine and placebo on hemodynamic, renal and neurohumoral variables in patients with advanced heart failure. Jpn Heart J 40:321–334CrossRefPubMedGoogle Scholar
  37. 37.
    Nieminen MS, Akkila J, Hasenfuss G et al (2000) Hemodynamic and neurohumoral effects of continuous infusion of levosimendan in patients with congestive heart failure. J Am Coll Cardiol 36:1903–1912CrossRefPubMedGoogle Scholar
  38. 38.
    Cleland JG, Ghosh J, Freemantle N et al (2004) Clinical trials update and cumulative meta-analyses from the American College of Cardiology: WATCH, SCD-HeFT, DINAMIT, CASONO, INSPIRE, STRATUS-US, RIO-Lipids and cardiac resynchronization therapy in heart failure. Eur J Heart Fail 6:501–508CrossRefPubMedGoogle Scholar
  39. 39.
    Nanas JN, Tsagalou EP, Kanakis J et al (2004) Long-term intermittent dobutamine infusion, combined with oral amiodarone for end-stage heart failure: a randomized double-blind study. Chest 125:1198–1204CrossRefPubMedGoogle Scholar
  40. 40.
    Adamopoulos S, Parissis JT, Iliodromitis EK et al (2006) Effects of levosimendan versus dobutamine on inflammatory and apoptotic pathways in acutely decompensated chronic heart failure. Am J Cardiol 98:102–1062006CrossRefPubMedGoogle Scholar
  41. 41.
    Bader FM, Gilbert EM, Mehta NA, Bristow MR (2010) Double-blind, placebo-controlled comparison of enoximone and dobutamine infusions in patients with moderate to severe chronic heart failure. Congest Heart Fail 16:265–270CrossRefPubMedGoogle Scholar
  42. 42.
    O’Connor CM, Gattis WA, Uretsky BF et al (1999) Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan international randomized survival trial (FIRST). Am Heart J 138:78–86CrossRefPubMedGoogle Scholar
  43. 43.
    Xiao RP (2001) Beta-adrenergic signaling in the heart: dual coupling of the beta2-adrenergic receptor to G(s) and G(i) proteins. Sci STKE 104:re 15Google Scholar
  44. 44.
    Cuffe MS, Califf RM, Adams KF et al (2002) Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial (OPTIME-CHF). JAMA 287:1541–1547CrossRefPubMedGoogle Scholar
  45. 45.
    Felker GM, Benza RL, Chandler AB et al (2003) Heart failure etiology and response to milrinone in decompensated heart failure: results from the OPTIME-CHF study. J Am Coll Cardiol 41:997–1003CrossRefPubMedGoogle Scholar
  46. 46.
    Hashim T, Sanam K, Revilla-Martinez M et al (2015) Clinical characteristics and outcomes of intravenous inotropic therapy in advanced heart failure. Circ Heart Fail. doi: 10.1161/CIRCHEARTFAILURE.114.001778 PubMedGoogle Scholar
  47. 47.
    Follath F, Cleland JG, Just H et al (2002) Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomized double blind trial. Lancet 360:196–202CrossRefPubMedGoogle Scholar
  48. 48.
    Packer M, Colucci W, Fisher L et al (2013) Effect of levosimendan on the short-term clinical course of patients with acutely decompensated heart failure. JACC Heart Fail 1:103–111CrossRefPubMedGoogle Scholar
  49. 49.
    Mebazaa A, Nieminen MS, Packer M et al (2007) Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE randomized trial. JAMA 297:1883–1891CrossRefPubMedGoogle Scholar
  50. 50.
    Altenberger J, Parissis JT, Costard-Jäckle A et al (2014) Efficacy and safety of the pulsed infusions of levosimendan in outpatients with advanced heart failure (LevoRep) study: a multicenter randomized trial. Eur J Heart Fail 16:898–906CrossRefPubMedGoogle Scholar
  51. 51.
    Malfatto G, Della Rosa F, Villani A et al (2012) Intermittent levosimendan infusions in advanced heart failure: favourable effects on left ventricular function, neurohormonal balance, and one-year survival. J Cardiovasc Pharmacol 60:450–455CrossRefPubMedGoogle Scholar
  52. 52.
    Bonios MJ, Terrovitis JV, Drakos SG et al (2012) Comparison of three different regimens of intermittent inotrope infusions for end-stage heart failure. Int J Cardiol 159:225–229CrossRefPubMedGoogle Scholar
  53. 53.
    Mavrogeni S, Giamouzis G, Papadopoulou E et al (2007) A 6-month follow-up of intermittent levosimendan administration effect on systolic function, specific activity questionnaire, and arrhythmia in advanced heart failure. J Card Fail 13:556–559CrossRefPubMedGoogle Scholar
  54. 54.
    Nanas JN, Papazoglou P, Tsagalou EP et al (2005) Efficacy and safety of intermittent, long-term concomitant dobutamine and levosimendan infusions in severe heart failure refractory to dobutamine alone. Am J Cardiol 95:768–771CrossRefPubMedGoogle Scholar
  55. 55.
    Parissis JT, Adamopoulos S, Farmakis D et al (2006) Effects of serial levosimendan infusions on left ventricular performance and plasma biomarkers of myocardial injury and neurohormonal and immune activation in patients with advanced heart failure. Heart 92:1768–1772CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Berger R, Moertl D, Huelsmann M et al (2007) Levosimendan and prostaglandin E1 for uptitration of beta-blockade in patients with refractory, advanced chronic heart failure. Eur J Heart Fail 9:202–208CrossRefPubMedGoogle Scholar
  57. 57.
    Papadopoulou EF, Mavrogeni SI, Dritsas A et al (2009) Assessment of quality of life using three different activity questionnaires in heart failure patients after monthly, intermittent administration of levosimendan during a six-month period. Hell J Cardiol 50:269–274Google Scholar
  58. 58.
    Kleber FX, Bollmann T, Borst MM et al (2009) Repetitive dosing of intravenous levosimendan improves pulmonary hemodynamics in patients with pulmonary hypertension: results of a pilot study. J Clin Pharmacol 49:109–115CrossRefPubMedGoogle Scholar
  59. 59.
    Silvetti S, Greco T, Di Prima AL et al (2014) Intermittent levosimendan improves mid-term survival in chronic heart failure patients: meta-analysis of randomized trials. Clin Res Cardiol 103:505–513CrossRefPubMedGoogle Scholar
  60. 60.
    Silvetti S, Nieminen MS (2016) Repeated or intermittent levosimendan treatment in advanced heart failure: an updated meta-analysis. Int J Cardiol 202:138–143CrossRefPubMedGoogle Scholar
  61. 61.
    Garcia-Gonzalez MJ, de Mora-Martin M, Lopez-Fernandez S et al (2013) Rationale and design of a randomized, double-blind, placebo controlled multicenter trial to study efficacy, security, and long term effects of intermittent repeated levosimendan administration in patients with advanced heart failure: LAICA study. Cardiovasc Drugs Ther 27:573–579CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Comin-Colet J (2015) ESC Heart failure congress 2015, late breaking clinical trialsGoogle Scholar
  63. 63.
    Holman WL (2012) Interagency registry for mechanically assisted circulatory support (INTERMACS). Circulation 126:1401–1406CrossRefPubMedGoogle Scholar
  64. 64.
    Barge-Caballero E, Paniagua-Martin MJ, Morzoa-Rivas R et al (2011) Usefulness of the INTERMACS scale for predicting outcomes after urgent heart transplantation. Rev Esp Cardiol 64:193–200CrossRefPubMedGoogle Scholar
  65. 65.
    Teerlink JR, Clarke CP, Saikali KG et al (2011) Dose-dependent augmentation of cardiac systolic function with the selective cardiac myosin activator, omecamtiv mecarbil: a first in man study. Lancet 378:667–675CrossRefPubMedGoogle Scholar
  66. 66.
    Gheorghiade M, Blair JE, Filippatos GS et al (2008) Hemodynamic, echocardiographic, and neurohormonal effects of istaroxime, a novel intravenous inotropic and lusitropic agent: a randomized controlled trial in patients hospitalized with heart failure. J Am Coll Cardiol 51:2276–2285CrossRefPubMedGoogle Scholar
  67. 67.
    Greenberg BH (2015) ESC congress, hotline heart failure, Sept 1st 2015Google Scholar
  68. 68.
    Wozniak CJ, Stehlik J, Baird BC et al (2014) Ventricular assist devices or inotropic agents in status 1A patients? Survival analysis of the united network of organ sharing database. Ann Thorac Surg 97:1364–1372CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hübner T, Nickel T, Steinbeck G et al (2015) A single German center experience with intermittent inotropes for patients on the high-urgent heart transplant waiting list. Clin Res Cardiol. doi: 10.1007/s00392-015-0852-1 Google Scholar
  70. 70.
    Eurotransplant Manual (2013), version 3.1, Chapter 6 Thoracic Allocation System, Oct 1st 2013Google Scholar
  71. 71.
    Bundesärztekammer (2013) Richtlinien für die Wartelistenführung und Organvermittlung gem. §16, Abs 1 S 1 Nrn 2 u. 5 TPG, Herz- und Herz-Lungen, Version 9.12.2013Google Scholar
  72. 72.
    Eurotransplant Annual Report 2014. ISBN-EAN:978-90-71658-33-4Google Scholar
  73. 73.
    Samuel U (2015) Eurotransplant, personal communication, Aug 13th, 2015Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Wolfgang von Scheidt
    • 1
    Email author
  • Matthias Pauschinger
    • 2
  • Georg Ertl
    • 3
  1. 1.I. Medizinische KlinikKlinikum Augsburg, Herzzentrum Augsburg-SchwabenAugsburgGermany
  2. 2.Medizinische Klinik 8, Kardiologie, Paracelsus Medizinische Privatuniversität, Universitätsklinikum NürnbergNürnbergGermany
  3. 3.Medizinische Klinik und Poliklinik I, Deutsches Zentrum für Herzinsuffizienz - Comprehensive Heart Failure CenterUniversitätsklinikum WürzburgWürzburgGermany

Personalised recommendations