Clinical Research in Cardiology

, Volume 104, Issue 7, pp 591–602 | Cite as

Assessment of global longitudinal strain using standardized myocardial deformation imaging: a modality independent software approach

  • Johannes H. Riffel
  • Marius G. P. Keller
  • Matthias Aurich
  • Yannick Sander
  • Florian Andre
  • Sorin Giusca
  • Fabian aus dem Siepen
  • Sebastian Seitz
  • Christian Galuschky
  • Grigorios Korosoglou
  • Derliz Mereles
  • Hugo A. Katus
  • Sebastian J. BussEmail author
Original Paper



Myocardial deformation measurement is superior to left ventricular ejection fraction in identifying early changes in myocardial contractility and prediction of cardiovascular outcome. The lack of standardization hinders its clinical implementation. The aim of the study is to investigate a novel standardized deformation imaging approach based on the feature tracking algorithm for the assessment of global longitudinal (GLS) and global circumferential strain (GCS) in echocardiography and cardiac magnetic resonance imaging (CMR).


70 subjects undergoing CMR were consecutively investigated with echocardiography within a median time of 30 min. GLS and GCS were analyzed with a post-processing software incorporating the same standardized algorithm for both modalities. Global strain was defined as the relative shortening of the whole endocardial contour length and calculated according to the strain formula.


Mean GLS values were −16.2 ± 5.3 and −17.3 ± 5.3 % for echocardiography and CMR, respectively. GLS did not differ significantly between the two imaging modalities, which showed strong correlation (r = 0.86), a small bias (−1.1 %) and narrow 95 % limits of agreement (LOA ± 5.4 %). Mean GCS values were −17.9 ± 6.3 and −24.4 ± 7.8 % for echocardiography and CMR, respectively. GCS was significantly underestimated by echocardiography (p < 0.001). A weaker correlation (r = 0.73), a higher bias (–6.5 %) and wider LOA (± 10.5 %) were observed for GCS. GLS showed a strong correlation (r = 0.92) when image quality was good, while correlation dropped to r = 0.82 with poor acoustic windows in echocardiography. GCS assessment revealed only a strong correlation (r = 0.87) when echocardiographic image quality was good. No significant differences for GLS between two different echocardiographic vendors could be detected.


Quantitative assessment of GLS using a standardized software algorithm allows the direct comparison of values acquired irrespective of the imaging modality. GLS may, therefore, serve as a reliable parameter for the assessment of global left ventricular function in clinical routine besides standard evaluation of the ejection fraction.


Left ventricular function Strain Echocardiography Cardiac magnetic resonance Speckle tracking Feature tracking 



Global longitudinal strain


Global circumferential strain


Left ventricular


Ejection fraction


Cardiac magnetic resonance imaging


Limits of agreement






End-systolic volume


End-diastolic volume


Steady state free precession


Filed of view


Repetition time


Echo time


Flip angle


Strain encoded imaging


Mitral annular plane systolic excursion



We thank our technologists Birgit Hörig, Daniel Helm and Angela Stöcker-Wochele for their excellent technical support. The study was supported by a grant from the B. Braun Stiftung. H. A. K. was supported by the DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung-German Centre for Cardiovascular Research)

Conflict of interest


Supplementary material

For further illustration of the tracking algorithm, 4 representative video files (2 CMR videos and 2 echocardiographic videos for GLS and GCS, respectively) are attached (AVI 986 kb)


  1. 1.
    Pocock SJ, Wang D, Pfeffer MA, Yusuf S, McMurray JJ, Swedberg KB, Ostergren J, Michelson EL, Pieper KS, Granger CB (2006) Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J 27(1):65–75PubMedCrossRefGoogle Scholar
  2. 2.
    Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, Daubert JP, Higgins SL, Brown MW, Andrews ML, Multicenter Automatic Defibrillator Implantation Trial III (2002) Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Eng J Med 346(12):877–883CrossRefGoogle Scholar
  3. 3.
    Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L, Cardiac Resynchronization-Heart Failure Study I (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Eng J Med 352(15):1539–1549CrossRefGoogle Scholar
  4. 4.
    Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, Pennell DJ (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 21(16):1387–1396PubMedCrossRefGoogle Scholar
  5. 5.
    Bernard Y, Meneveau N, Boucher S, Magnin D, Anguenot T, Schiele F, Vuillemenot A, Bassand JP (2001) Lack of agreement between left ventricular volumes and ejection fraction determined by two-dimensional echocardiography and contrast cineangiography in postinfarction patients. Echocardiography 18(2):113–122PubMedCrossRefGoogle Scholar
  6. 6.
    Erbel R, Schweizer P, Lambertz H, Henn G, Meyer J, Krebs W, Effert S (1983) Echoventriculography—a simultaneous analysis of two-dimensional echocardiography and cineventriculography. Circulation 67(1):205–215PubMedCrossRefGoogle Scholar
  7. 7.
    Karamitsos TD, Francis JM, Myerson S, Selvanayagam JB, Neubauer S (2009) The role of cardiovascular magnetic resonance imaging in heart failure. J Am Coll Cardiol 54(15):1407–1424PubMedCrossRefGoogle Scholar
  8. 8.
    Florian A, Schaufele T, Ludwig A, Rosch S, Wenzelburger I, Yildiz H, Sechtem U, Yilmaz A (2014) Diagnostic value of CMR in young patients with clinically suspected acute myocarditis is determined by cardiac enzymes. Clin Res Cardiol. doi: 10.1007/s00392-014-0770-7 PubMedGoogle Scholar
  9. 9.
    Braggion-Santos MF, Andre F, Lossnitzer D, Hofmann E, Simpfendorfer J, Dosch A, Katus HA, Steen H (2014) Prevalence of different forms of infarct-atypical late gadolinium enhancement in patients early and late after heart transplantation. Clin Res Cardiol 103(1):57–63PubMedCrossRefGoogle Scholar
  10. 10.
    Buss SJ, Breuninger K, Lehrke S, Voss A, Galuschky C, Lossnitzer D, Andre F, Ehlermann P, Franke J, Taeger T, Frankenstein L, Steen H, Meder B, Giannitsis E, Katus HA, Korosoglou G (2014) Assessment of myocardial deformation with cardiac magnetic resonance strain imaging improves risk stratification in patients with dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging. doi: 10.1093/ehjci/jeu181 Google Scholar
  11. 11.
    Petrov G, Kelle S, Fleck E, Wellnhofer E (2014) Incremental cost-effectiveness of dobutamine stress cardiac magnetic resonance imaging in patients at intermediate risk for coronary artery disease. Clinical Res Cardiol. doi: 10.1007/s00392-014-0793-0 Google Scholar
  12. 12.
    Wong TC, Piehler K, Puntil KS, Moguillansky D, Meier CG, Lacomis JM, Kellman P, Cook SC, Schwartzman DS, Simon MA, Mulukutla SR, Schelbert EB (2013) Effectiveness of late gadolinium enhancement to improve outcomes prediction in patients referred for cardiovascular magnetic resonance after echocardiography. J Cardiovasc Magn Reson 15:6. doi: 10.1186/1532-429X-15-6 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Abraham TP, Dimaano VL, Liang HY (2007) Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation 116(22):2597–2609PubMedCrossRefGoogle Scholar
  14. 14.
    Gorcsan J 3rd, Tanaka H (2011) Echocardiographic assessment of myocardial strain. J Am Coll Cardiol 58(14):1401–1413PubMedCrossRefGoogle Scholar
  15. 15.
    Hor KN, Wansapura J, Markham LW, Mazur W, Cripe LH, Fleck R, Benson DW, Gottliebson WM (2009) Circumferential strain analysis identifies strata of cardiomyopathy in Duchenne muscular dystrophy: a cardiac magnetic resonance tagging study. J Am Coll Cardiol 53(14):1204–1210PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Biederman RW, Doyle M, Young AA, Devereux RB, Kortright E, Perry G, Bella JN, Oparil S, Calhoun D, Pohost GM, Dell’Italia LJ (2008) Marked regional left ventricular heterogeneity in hypertensive left ventricular hypertrophy patients: a losartan intervention for endpoint reduction in hypertension (LIFE) cardiovascular magnetic resonance and echocardiographic substudy. Hypertension 52(2):279–286PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ashford MW Jr, Liu W, Lin SJ, Abraszewski P, Caruthers SD, Connolly AM, Yu X, Wickline SA (2005) Occult cardiac contractile dysfunction in dystrophin-deficient children revealed by cardiac magnetic resonance strain imaging. Circulation 112(16):2462–2467PubMedCrossRefGoogle Scholar
  18. 18.
    Young AA, Kramer CM, Ferrari VA, Axel L, Reichek N (1994) Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation 90(2):854–867PubMedCrossRefGoogle Scholar
  19. 19.
    Jurcut R, Wildiers H, Ganame J, D’Hooge J, De Backer J, Denys H, Paridaens R, Rademakers F, Voigt JU (2008) Strain rate imaging detects early cardiac effects of pegylated liposomal Doxorubicin as adjuvant therapy in elderly patients with breast cancer. J Am Soc Echocardiogr 21(12):1283–1289PubMedCrossRefGoogle Scholar
  20. 20.
    Hor KN, Gottliebson WM, Carson C, Wash E, Cnota J, Fleck R, Wansapura J, Klimeczek P, Al-Khalidi HR, Chung ES, Benson DW, Mazur W (2010) Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging 3(2):144–151PubMedCrossRefGoogle Scholar
  21. 21.
    Augustine D, Lewandowski AJ, Lazdam M, Rai A, Francis J, Myerson S, Noble A, Becher H, Neubauer S, Petersen SE, Leeson P (2013) Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers: comparison with tagging and relevance of gender. J Cardiovasc Magn Reson 15:8PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    el Ibrahim SH (2011) Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques–pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson 13:36. doi: 10.1186/1532-429x-13-36 PubMedCentralCrossRefGoogle Scholar
  23. 23.
    Pellikka PA, Douglas PS, Miller JG, Abraham TP, Baumann R, Buxton DB, Byrd BF 3rd, Chen P, Cook NL, Gardin JM, Hansen G, Houle HC, Husson S, Kaul S, Klein AL, Lang RM, Leong-Poi H, Lopez H, Mahmoud TM, Maslak S, McCulloch ML, Metz S, Nagueh SF, Pearlman AS, Pibarot P, Picard MH, Porter TR, Prater D, Rodriguez R, Sarano ME, Scherrer-Crosbie M, Shirali GS, Sinusas A, Slosky JJ, Sugeng L, Tatpati A, Villanueva FS, von Ramm OT, Weissman NJ, Zamani S (2013) American Society of Echocardiography Cardiovascular Technology and Research Summit: a roadmap for 2020. J Am Soc Echocardiogr 26(4):325–338PubMedCrossRefGoogle Scholar
  24. 24.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton, Stewart WJ, Chamber Quantification Writing G, American Society of Echocardiography’s G, Standards C, European Association of E (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiolog. J Am Soc Echocardiogr 18(12):1440–1463PubMedCrossRefGoogle Scholar
  25. 25.
    Pirat B, Khoury DS, Hartley CJ, Tiller L, Rao L, Schulz DG, Nagueh SF, Zoghbi WA (2008) A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia-reperfusion. J Am Coll Cardiol 51(6):651–659PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Korinek J, Wang J, Sengupta PP, Miyazaki C, Kjaergaard J, McMahon E, Abraham TP, Belohlavek M (2005) Two-dimensional strain–a Doppler-independent ultrasound method for quantitation of regional deformation: validation in vitro and in vivo. J Am Soc Echocardiogr 18(12):1247–1253PubMedCrossRefGoogle Scholar
  27. 27.
    Negishi K, Lucas S, Negishi T, Hamilton J, Marwick TH (2013) What is the primary source of discordance in strain measurement between vendors: imaging or analysis? Ultrasound Med Biol 39(4):714–720PubMedCrossRefGoogle Scholar
  28. 28.
    Luszczak J, Olszowska M, Drapisz S, Plazak W, Kaznica-Wiatr M, Karch I, Podolec P (2013) Assessment of left ventricle function in aortic stenosis: mitral annular plane systolic excursion is not inferior to speckle tracking echocardiography derived global longitudinal peak strain. Cardiovasc Ultrasound 11:45PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Rihal CS, Nishimura RA, Hatle LK, Bailey KR, Tajik AJ (1994) Systolic and diastolic dysfunction in patients with clinical diagnosis of dilated cardiomyopathy. Relation to symptoms and prognosis. Circulation 90(6):2772–2779PubMedCrossRefGoogle Scholar
  30. 30.
    Schuster A, Ishida M, Morton G, Bigalke B, Moonim MT, Nagel E (2012) Value of cardiovascular magnetic resonance imaging in myocardial hypertrophy. Clin Res Cardiol 101(3):237–238PubMedCrossRefGoogle Scholar
  31. 31.
    Wohrle J, von Scheidt F, Schauwecker P, Wiesneth M, Markovic S, Schrezenmeier H, Hombach V, Rottbauer W, Bernhardt P (2013) Impact of cell number and microvascular obstruction in patients with bone-marrow derived cell therapy: final results from the randomized, double-blind, placebo controlled intracoronary Stem Cell therapy in patients with Acute Myocardial Infarction (SCAMI) trial. Clin Res Cardiol 102(10):765–770PubMedCrossRefGoogle Scholar
  32. 32.
    Dumesnil JG, Shoucri RM, Laurenceau JL, Turcot J (1979) A mathematical model of the dynamic geometry of the intact left ventricle and its application to clinical data. Circulation 59(5):1024–1034PubMedCrossRefGoogle Scholar
  33. 33.
    Kato TS, Noda A, Izawa H, Yamada A, Obata K, Nagata K, Iwase M, Murohara T, Yokota M (2004) Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue Doppler ultrasonography. Circulation 110(25):3808–3814PubMedCrossRefGoogle Scholar
  34. 34.
    Buss SJ, Emami M, Mereles D, Korosoglou G, Kristen AV, Voss A, Schellberg D, Zugck C, Galuschky C, Giannitsis E, Hegenbart U, Ho AD, Katus HA, Schonland SO, Hardt SE (2012) Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers. J Am Coll Cardiol 60(12):1067–1076PubMedCrossRefGoogle Scholar
  35. 35.
    Cho GY, Marwick TH, Kim HS, Kim MK, Hong KS, Oh DJ (2009) Global 2-dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol 54(7):618–624PubMedCrossRefGoogle Scholar
  36. 36.
    Stanton T, Leano R, Marwick TH (2009) Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging 2(5):356–364PubMedCrossRefGoogle Scholar
  37. 37.
    Motoki H, Borowski AG, Shrestha K, Troughton RW, Tang WH, Thomas JD, Klein AL (2012) Incremental prognostic value of assessing left ventricular myocardial mechanics in patients with chronic systolic heart failure. J Am Coll Cardiol 60(20):2074–2081PubMedCrossRefGoogle Scholar
  38. 38.
    Korosoglou G, Lehrke S, Wochele A, Hoerig B, Lossnitzer D, Steen H, Giannitsis E, Osman NF, Katus HA (2010) Strain-encoded CMR for the detection of inducible ischemia during intermediate stress. JACC Cardiovasc Imaging 3(4):361–371PubMedCrossRefGoogle Scholar
  39. 39.
    Kalam K, Otahal P, Marwick TH (2014) Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart. doi: 10.1136/heartjnl-2014-305538 PubMedGoogle Scholar
  40. 40.
    Szymanski C, Levy F, Tribouilloy C (2014) Should LVEF be replaced by global longitudinal strain? Heart. doi: 10.1136/heartjnl-2014-306186 Google Scholar
  41. 41.
    Sengupta PP, Narula J (2014) Cardiac strain as a universal biomarker: interpreting the sounds of uneasy heart muscle cells. JACC Cardiovasc Imaging 7(5):534–536PubMedCrossRefGoogle Scholar
  42. 42.
    Takigiku K, Takeuchi M, Izumi C, Yuda S, Yuda S, Sakata K, Ohte N, Tanabe K, Nakatani S, investigators J, investigators J (2012) Normal range of left ventricular 2-dimensional strain: Japanese Ultrasound Speckle Tracking of the Left Ventricle (JUSTICE) study. Circ J 76(11):2623–2632PubMedCrossRefGoogle Scholar
  43. 43.
    Onishi T, Saha SK, Ludwig DR, Marek JJ, Cavalcante JL, Schelbert EB, Schwartzman D, Gorcsan J 3rd (2013) Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking. J Cardiovasc Magn Reson 15:95PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, Pedri S, Ito Y, Abe Y, Metz S, Song JH, Hamilton J, Sengupta PP, Kolias TJ, d’Hooge J, Aurigemma GP, Thomas JD, Badano LP (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 16(1):1–11PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Johannes H. Riffel
    • 1
  • Marius G. P. Keller
    • 1
  • Matthias Aurich
    • 1
  • Yannick Sander
    • 1
  • Florian Andre
    • 1
  • Sorin Giusca
    • 1
  • Fabian aus dem Siepen
    • 1
  • Sebastian Seitz
    • 1
  • Christian Galuschky
    • 3
  • Grigorios Korosoglou
    • 1
  • Derliz Mereles
    • 1
  • Hugo A. Katus
    • 1
    • 2
  • Sebastian J. Buss
    • 1
    Email author
  1. 1.Department of CardiologyUniversity of HeidelbergHeidelbergGermany
  2. 2.DZHK (German Centre for Cardiovascular Research), partner site HeidelbergHeidelbergGermany
  3. 3.TomTec Imaging Systems GmbHMunichGermany

Personalised recommendations