Advertisement

Clinical Research in Cardiology

, Volume 103, Issue 3, pp 191–201 | Cite as

Impact of type 2 diabetes mellitus and glucose control on fractional flow reserve measurements in intermediate grade coronary lesions

  • Sebastian Reith
  • Simone Battermann
  • Martin Hellmich
  • Nikolaus Marx
  • Mathias Burgmaier
Original Paper

Abstract

Background

Hemodynamic relevance of intermediate grade coronary stenoses is accurately assessed by fractional flow reserve (FFR) measurements. However, the reliability of FFR in patients with type 2 diabetes mellitus (DM) and inadequate glucose control (IGC) is incompletely explored. This study aimed to investigate the impact of DM and IGC on the relationship between FFR measurements and quantitative coronary angiography (QCA)-derived morphological parameters.

Methods

We performed FFR and QCA in 266 intermediate grade lesions of 224 patients (113 non-DM and 111 DM) with stable coronary artery disease. Diabetic patients were categorized into groups with adequate (HbA1C <7 %) and inadequate (HbA1c ≥7 %) glucose control.

Results

Intermediate grade lesions from all-DM versus non-DM patients differed significantly in lesion length (LL) (10.91 ± 5.79 mm versus 9.23 ± 3.85 mm, p = 0.005) and hemodynamic relevance (FFR ≤0.8, 37.7 % versus 24.2 %, p = 0.018). FFR measurements in non-DM, all-DM and DM-IGC patients correlated significantly with percent diameter stenosis (%DS) [non-DM: r 2 = 0.075 (p = 0.007); all-DM: r 2 = 0.254 (p < 0.001), DM-IGC: r 2 = 0.301 (p < 0.001)] and LL [non-DM: r 2 = 0.356; all-DM: r 2 = 0.580, DM-IGC: r 2 = 0.513 (all p < 0.001)]. There was a better correlation between FFR and both %DS (p = 0.022) and LL (p = 0.011) among all-DM compared to non-DM patients. Receiver-operating curve analysis demonstrated that among all QCA-derived parameters LL had the best diagnostic efficacy to predict FFR ≤0.8 for non-DM (AUC 0.911, 95 % CI 0.861–0.960, best cut-off value 9.22 mm), all-DM (AUC 0.967, 95 % CI 0.942–0.991, best cut-off value 9.97 mm) and DM-IGC (AUC 0.960, 95 % CI 0.920–0.999, best cut-off value 9.97 mm) patients.

Conclusion

Our data in intermediate grade lesions suggest that FFR is reliable in DM patients and LL is the best predictor for hemodynamic relevance in patients without and with diabetes, irrespective of the glycemic state.

Keywords

Quantitative coronary angiography Fractional flow reserve Type 2 diabetes mellitus Glucose control Lesion length 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Tobis J, Azarbal B, Slavin L (2007) Assessment of intermediate severity coronary lesions in the catheterization laboratory. J Am Coll Cardiol 49(8):839–848PubMedCrossRefGoogle Scholar
  2. 2.
    Pijls NH et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334(26):1703–1708PubMedCrossRefGoogle Scholar
  3. 3.
    Kang SJ et al (2012) Usefulness of minimal luminal coronary area determined by intravascular ultrasound to predict functional significance in stable and unstable angina pectoris. Am J Cardiol 109(7):947–953PubMedCrossRefGoogle Scholar
  4. 4.
    Briguori C et al (2001) Intravascular ultrasound criteria for the assessment of the functional significance of intermediate coronary artery stenoses and comparison with fractional flow reserve. Am J Cardiol 87(2):136–141PubMedCrossRefGoogle Scholar
  5. 5.
    Gonzalo N et al (2012) Morphometric assessment of coronary stenosis relevance with optical coherence tomography: a comparison with fractional flow reserve and intravascular ultrasound. J Am Coll Cardiol 59(12):1080–1089PubMedCrossRefGoogle Scholar
  6. 6.
    Reith S et al (2013) Relationship between optical coherence tomography derived intraluminal and intramural criteria and haemodynamic relevance as determined by fractional flow reserve in intermediate coronary stenoses of patients with type 2 diabetes. Heart 99(10):700–707PubMedCrossRefGoogle Scholar
  7. 7.
    Iguchi T et al (2013) Impact of lesion length on functional significance in intermediate coronary lesions. Clin Cardiol 36(3):172–177PubMedCrossRefGoogle Scholar
  8. 8.
    Jimenez-Quevedo P et al (2005) LDL-cholesterol predicts negative coronary artery remodelling in diabetic patients: an intravascular ultrasound study. Eur Heart J 26(21):2307–2312PubMedCrossRefGoogle Scholar
  9. 9.
    Nahser PJ Jr et al (1995) Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation 91(3):635–640PubMedCrossRefGoogle Scholar
  10. 10.
    Di Carli MF et al (2003) Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol 41(8):1387–1393PubMedCrossRefGoogle Scholar
  11. 11.
    Jensen CJ et al (2011) Impact of hyperglycemia at admission in patients with acute ST-segment elevation myocardial infarction as assessed by contrast-enhanced MRI. Clin Res Cardiol 100(8):649–659PubMedCrossRefGoogle Scholar
  12. 12.
    Sahinarslan A et al (2009) The reliability of fractional flow reserve measurement in patients with diabetes mellitus. Coron Artery Dis 20(5):317–321PubMedCrossRefGoogle Scholar
  13. 13.
    Dominguez-Franco AJ et al (2008) Long-term prognosis in diabetic patients in whom revascularization is deferred following fractional flow reserve assessment. Rev Esp Cardiol 61(4):352–359PubMedCrossRefGoogle Scholar
  14. 14.
    Yanagisawa H et al (2004) Application of pressure-derived myocardial fractional flow reserve in assessing the functional severity of coronary artery stenosis in patients with diabetes mellitus. Circ J 68(11):993–998PubMedCrossRefGoogle Scholar
  15. 15.
    Anderson JL et al (2007) ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-Elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction) developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. J Am Coll Cardiol 50(7):e1–e157PubMedCrossRefGoogle Scholar
  16. 16.
    Ryden L et al (2013) ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the task force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur Heart J 34(39):3035–3087PubMedCrossRefGoogle Scholar
  17. 17.
    Reiber JH et al (1985) Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation 71(2):280–288PubMedCrossRefGoogle Scholar
  18. 18.
    Tonino PA et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224PubMedCrossRefGoogle Scholar
  19. 19.
    Sachs L (1992) Angewandte Statistik Anwendung statistischer Methoden. Springer, BerlinGoogle Scholar
  20. 20.
    Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293PubMedCrossRefGoogle Scholar
  21. 21.
    DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845PubMedCrossRefGoogle Scholar
  22. 22.
    Moses JW et al (2006) Drug-eluting stents in the treatment of intermediate lesions: pooled analysis from four randomized trials. J Am Coll Cardiol 47(11):2164–2171PubMedCrossRefGoogle Scholar
  23. 23.
    Tentzeris I et al (2011) Long-term outcome after drug-eluting stent implantation in comparison with bare metal stents: a single centre experience. Clin Res Cardiol 100(3):191–200PubMedCrossRefGoogle Scholar
  24. 24.
    de Waha A et al (2011) Long-term outcome after sirolimus-eluting stents versus bare metal stents in patients with diabetes mellitus: a patient-level meta-analysis of randomized trials. Clin Res Cardiol 100(7):561–570PubMedCrossRefGoogle Scholar
  25. 25.
    Sels JW et al (2011) Fractional flow reserve in unstable angina and non-ST-segment elevation myocardial infarction experience from the FAME (fractional flow reserve versus angiography for multivessel evaluation) study. JACC Cardiovasc Interv 4(11):1183–1189PubMedCrossRefGoogle Scholar
  26. 26.
    Bishop AH, Samady H (2004) Fractional flow reserve: critical review of an important physiologic adjunct to angiography. Am Heart J 147(5):792–802PubMedCrossRefGoogle Scholar
  27. 27.
    De Bruyne B et al (2001) Fractional flow reserve in patients with prior myocardial infarction. Circulation 104(2):157–162PubMedCrossRefGoogle Scholar
  28. 28.
    Pilz G et al (2011) Influence of small caliber coronary arteries on the diagnostic accuracy of adenosine stress cardiac magnetic resonance imaging. Clin Res Cardiol 100(3):201–208PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Takiuchi S et al (2002) Hypertension attenuates the efficacy of hypoglycemic therapy for preserving coronary flow reserve in patients with type 2 diabetes. Hypertens Res 25(6):893–900PubMedCrossRefGoogle Scholar
  30. 30.
    Murtagh B et al (2003) Role of incremental doses of intracoronary adenosine for fractional flow reserve assessment. Am Heart J 146(1):99–105PubMedCrossRefGoogle Scholar
  31. 31.
    Casella G et al (2004) Are high doses of intracoronary adenosine an alternative to standard intravenous adenosine for the assessment of fractional flow reserve? Am Heart J 148(4):590–595PubMedCrossRefGoogle Scholar
  32. 32.
    De Luca G et al (2011) Effects of increasing doses of intracoronary adenosine on the assessment of fractional flow reserve. JACC Cardiovasc Interv 4(10):1079–1084PubMedCrossRefGoogle Scholar
  33. 33.
    Bartunek J et al (1995) Quantitative coronary angiography in predicting functional significance of stenoses in an unselected patient cohort. J Am Coll Cardiol 26(2):328–334PubMedCrossRefGoogle Scholar
  34. 34.
    Brosh D et al (2005) Effect of lesion length on fractional flow reserve in intermediate coronary lesions. Am Heart J 150(2):338–343PubMedCrossRefGoogle Scholar
  35. 35.
    Takayama T, Hodgson JM (2001) Prediction of the physiologic severity of coronary lesions using 3D IVUS: validation by direct coronary pressure measurements. Catheter Cardiovasc Interv 53(1):48–55PubMedCrossRefGoogle Scholar
  36. 36.
    Costa MA et al (2008) Impact of stent deployment procedural factors on long-term effectiveness and safety of sirolimus-eluting stents (final results of the multicenter prospective STLLR trial). Am J Cardiol 101(12):1704–1711PubMedCrossRefGoogle Scholar
  37. 37.
    D’Ascenzo F et al (2012) Incidence and predictors of coronary stent thrombosis: evidence from an international collaborative meta-analysis including 30 studies, 221,066 patients, and 4276 thromboses. Int J Cardiol 167(2):575–584PubMedCrossRefGoogle Scholar
  38. 38.
    Taggart DP (2013)The FREEDOM trial: a definitive answer to coronary artery bypass grafting or stents in patients with diabetes and multivessel coronary artery disease. Eur J Cardiothorac SurgGoogle Scholar
  39. 39.
    Farkouh ME et al (2012) Strategies for multivessel revascularization in patients with diabetes. N Engl J Med 367(25):2375–2384PubMedCrossRefGoogle Scholar
  40. 40.
    Corpus RA et al (2004) Optimal glycemic control is associated with a lower rate of target vessel revascularization in treated type II diabetic patients undergoing elective percutaneous coronary intervention. J Am Coll Cardiol 43(1):8–14PubMedCrossRefGoogle Scholar
  41. 41.
    Akin I et al (2010) Clinical outcomes in diabetic and non-diabetic patients with drug-eluting stents: results from the first phase of the prospective multicenter German DES.DE registry. Clin Res Cardiol 99(6):393–400PubMedCrossRefGoogle Scholar
  42. 42.
    Bundesärztekammer(BÄK), Kassenärztliche Bundesvereinigung(KBV), and Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften(AWMF), Nationale VersorgungsLeitlinie Therapie des Typ-2-Diabetes – Langfassung. Available from: http://www.versorgungsleitlinien.de/themen/diabetes2/dm2_Therapie, 2013
  43. 43.
    Farhan S et al (2012) Comparison of HbA1c and oral glucose tolerance test for diagnosis of diabetes in patients with coronary artery disease. Clin Res Cardiol 101(8):625–630PubMedCrossRefGoogle Scholar
  44. 44.
    Doerr R et al (2011) Oral glucose tolerance test and HbA(1)c for diagnosis of diabetes in patients undergoing coronary angiography: (corrected) the silent diabetes study. Diabetologia 54(11):2923–2930PubMedCrossRefGoogle Scholar
  45. 45.
    Bartnik M et al (2004) The prevalence of abnormal glucose regulation in patients with coronary artery disease across Europe. The Euro Heart Survey on diabetes and the heart. Eur Heart J 25(21):1880–1890PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastian Reith
    • 1
  • Simone Battermann
    • 1
  • Martin Hellmich
    • 2
  • Nikolaus Marx
    • 1
  • Mathias Burgmaier
    • 1
  1. 1.Department of CardiologyMedical Clinic I, University Hospital of the RWTH AachenAachenGermany
  2. 2.Institute of Medical Statistics, Informatics and EpidemiologyUniversity of CologneCologneGermany

Personalised recommendations