Advertisement

Clinical Research in Cardiology

, Volume 103, Issue 2, pp 97–106 | Cite as

Impact of real-time contact force and impedance measurement in pulmonary vein isolation procedures for treatment of atrial fibrillation

  • Reza WakiliEmail author
  • Sebastian Clauss
  • Viola Schmidt
  • Michael Ulbrich
  • Anton Hahnefeld
  • Franziska Schüssler
  • Johannes Siebermair
  • Stefan Kääb
  • Heidi L. Estner
Original Paper

Abstract

Background

Pulmonary vein isolation (PVI) is an established procedure to treat atrial fibrillation (AF). New techniques are necessary to improve procedural parameters like shortening of procedure duration. Real-time contact force (CF) catheters are new tools aiming to improve PVI by optimizing electrode–tissue contact and generating more effective lesions. Objective of this study was to investigate the influence on procedural parameters and clinical outcome by using a CF catheter for PVI.

Methods

PVI was performed on 67 consecutive patients using a CF catheter (n = 32) or a standard ablation catheter (SAC, n = 35). Study endpoints included number of energy applications, impedance drop, fluoroscopy time, and left atrial (LA) procedure time and freedom from AF after 6 and 12 months.

Results

Procedural endpoint was reached in all patients with a similar clinical outcome (freedom from AF) in both groups 6 months (62.9 vs. 62.5 %) and 12 months post PVI (59.4 vs. 62.9 % in CF vs. SAC group, respectively). However, CF-guided ablation resulted in a greater fall of impedance (6.58 ± 0.33 vs. 9.09 ± 0.53 Ω, *** p < 0.001), lower number of energy applications (44.20 ± 3.67 vs. 34.06 ± 3.11, * p < 0.05), reduction of LA procedure time (95.52 ± 7.35 vs. 78.08 ± 7.23* min) and a significant reduction of fluoroscopy time (51.4 ± 3.3 vs. 33.0 ± 2.7*** min). In addition, a detailed analysis showed a significant correlation between quantitative impedance drop and amount of CF applied, suggesting more efficient lesion creation by CF-guided ablation.

Conclusion

Use of CF catheters in PVI has a beneficial effect on procedural parameters, probably by improving efficacy of transmural lesion formation.

Keywords

Arrhythmia Atrial fibrillation Ablation Pulmonary vein isolation Contact force catheter Impedance 

Notes

Acknowledgments

The authors thank Bianca Hildebrandt and Thomas Matis for their help with data acquisition and processing. This study contains elements of the doctoral thesis of Viola Schmidt. Funding: Fondation Leducq European-North American Atrial Fibrillation Research Alliance (ENAFRA, 07/CVD/03, S.K.), “Förderprogramm für Forschung und Lehre der LMU” (FöFoLe), University of Munich, Germany (R.W.); NGFN Plus (S.K.), LMU Excellence Initiative (S.K.), Spitzencluster m4 “Personalisierte Medizin” (S.K.) and German Centre for Cardiovascular Research (S.K.).

Conflict of interest

None.

Ethical statement

The study was approved by the local ethics committee and was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All patients gave their informed consent prior to their inclusion in the study.

References

  1. 1.
    Ehrlich JR, Kaluzny M, Baumann S et al (2011) Biomarkers of structural remodelling and endothelial dysfunction for prediction of cardiovascular events or death in patients with atrial fibrillation. Clin Res Cardiol 100(11):1029–1036. doi: 10.1007/s00392-011-0337-9 PubMedCrossRefGoogle Scholar
  2. 2.
    Providencia R, Barra S, Paiva L (2013) Atrial fibrillation, elevated troponin, ischemic stroke and adverse outcomes: understanding the connection. Clin Res Cardiol. doi: 10.1007/s00392-013-0591-0 PubMedGoogle Scholar
  3. 3.
    Lampe B, Hammerstingl C, Schwab JO et al (2012) Adverse effects of permanent atrial fibrillation on heart failure in patients with preserved left ventricular function and chronic right apical pacing for complete heart block. Clin Res Cardiol 101(10):829–836. doi: 10.1007/s00392-012-0468-7 PubMedCrossRefGoogle Scholar
  4. 4.
    Gitt AK, Smolka W, Michailov G et al (2013) Types and outcomes of cardioversion in patients admitted to hospital for atrial fibrillation: results of the German RHYTHM-AF Study. Clin Res Cardiol. doi: 10.1007/s00392-013-0586-x Google Scholar
  5. 5.
    Meinertz T, Kirch W, Rosin L et al (2011) Management of atrial fibrillation by primary care physicians in Germany: baseline results of the ATRIUM registry. Clin Res Cardiol 100(10):897–905. doi: 10.1007/s00392-011-0320-5 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Said SM, Braun-Dullaeus RC (2011) Comment on the European guidelines for the management of atrial fibrillation. Clin Res Cardiol 100(6):543–544. doi: 10.1007/s00392-010-0280-1 PubMedCrossRefGoogle Scholar
  7. 7.
    Seivani Y, Abdel-Wahab M, Geist V et al (2013) Long-term safety and efficacy of dual therapy with oral anticoagulation and clopidogrel in patients with atrial fibrillation treated with drug-eluting stents. Clin Res Cardiol. doi: 10.1007/s00392-013-0592-z PubMedGoogle Scholar
  8. 8.
    Steiner T, Bohm M, Dichgans M et al (2013) Recommendations for the emergency management of complications associated with the new direct oral anticoagulants (DOACs), apixaban, dabigatran and rivaroxaban. Clin Res Cardiol 102(6):399–412. doi: 10.1007/s00392-013-0560-7 PubMedCrossRefGoogle Scholar
  9. 9.
    Vollmann D, Luthje L, Seegers J et al (2011) Sternal fracture after elective electrical cardioversion of atrial fibrillation. Clin Res Cardiol 100(3):261–262. doi: 10.1007/s00392-010-0251-6 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Vollmann D, Sossalla S, Schroeter MR, Zabel M (2013) Renal artery ablation instead of pulmonary vein ablation in a hypertensive patient with symptomatic, drug-resistant, persistent atrial fibrillation. Clin Res Cardiol 102(4):315–318. doi: 10.1007/s00392-012-0529-y PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Wohrle J, Bertrand B, Sondergaard L et al (2012) PFO closuRE and CryptogenIc StrokE (PRECISE) registry: a multi-center, international registry. Clin Res Cardiol 101(10):787–793. doi: 10.1007/s00392-012-0458-9 PubMedCrossRefGoogle Scholar
  12. 12.
    Wasmer K, Kobe J, Dechering D et al (2013) CHADS(2) and CHA(2)DS (2)-VASc score of patients with atrial fibrillation or flutter and newly detected left atrial thrombus. Clin Res Cardiol 102(2):139–144. doi: 10.1007/s00392-012-0507-4 PubMedCrossRefGoogle Scholar
  13. 13.
    Calkins H, Kuck KH, Cappato R et al (2012) 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Heart Rhythm 9(4):632–696.e621. doi: 10.1016/j.hrthm.2011.12.016 PubMedCrossRefGoogle Scholar
  14. 14.
    Chun KR, Schmidt B, Kuck KH et al (2013) Catheter ablation of atrial fibrillation in the young: insights from the German Ablation Registry. Clin Res Cardiol. doi: 10.1007/s00392-013-0553-6 Google Scholar
  15. 15.
    Haissaguerre M, Jais P, Shah DC et al (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339(10):659–666. doi: 10.1056/NEJM199809033391003 PubMedCrossRefGoogle Scholar
  16. 16.
    Kuck KH, Ernst S, Dorwarth U et al (2007) Guidelines for catheter ablation. Clin Res Cardiol 96(11):833–849. doi: 10.1007/s00392-007-0590-0 PubMedCrossRefGoogle Scholar
  17. 17.
    Luthje L, Vollmann D, Seegers J et al (2011) Remote magnetic versus manual catheter navigation for circumferential pulmonary vein ablation in patients with atrial fibrillation. Clin Res Cardiol 100(11):1003–1011. doi: 10.1007/s00392-011-0333-0 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Schmidt M, Dorwarth U, Straube F et al (2012) A novel double cryoballoon strategy in persistent atrial fibrillation: a pilot study. Clin Res Cardiol 101(10):777–785. doi: 10.1007/s00392-012-0456-y PubMedCrossRefGoogle Scholar
  19. 19.
    Richter B, Gwechenberger M, Socas A et al (2012) Markers of oxidative stress after ablation of atrial fibrillation are associated with inflammation, delivered radiofrequency energy and early recurrence of atrial fibrillation. Clin Res Cardiol 101(3):217–225. doi: 10.1007/s00392-011-0383-3 PubMedCrossRefGoogle Scholar
  20. 20.
    Thiagalingam A, D’Avila A, Foley L et al (2010) Importance of catheter contact force during irrigated radiofrequency ablation: evaluation in a porcine ex vivo model using a force-sensing catheter. J Cardiovasc Electrophysiol 21(7):806–811. doi: 10.1111/j.1540-8167.2009.01693.x PubMedGoogle Scholar
  21. 21.
    Yokoyama K, Nakagawa H, Shah DC et al (2008) Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus. Circulation Arrhythmia and electrophysiology 1(5):354–362. doi: 10.1161/CIRCEP.108.803650 PubMedCrossRefGoogle Scholar
  22. 22.
    Kautzner J, Neuzil P, Peichl P, et al (2012) Contact force, force time integral and lesion continuity are critical to improve durable PV isolation: EFFICAS 2 results. Heart Rhythm 9(5S):1–564Google Scholar
  23. 23.
    Kerst G, Weig HJ, Weretka S et al (2012) Contact force-controlled zero-fluoroscopy catheter ablation of right-sided and left atrial arrhythmia substrates. Heart Rhythm 9(5):709–714. doi: 10.1016/j.hrthm.2011.12.025 PubMedCrossRefGoogle Scholar
  24. 24.
    Kuck KH, Reddy VY, Schmidt B et al (2012) A novel radiofrequency ablation catheter using contact force sensing: Toccata study. Heart Rhythm 9(1):18–23. doi: 10.1016/j.hrthm.2011.08.021 PubMedCrossRefGoogle Scholar
  25. 25.
    Neuzil P, Kautzner J, Cihak R, et al (2011) EFFICAS I early results: does gap formation following pulmonary vein isolation correlate with low contact force? Europace 13 (Suppl 3): NP. doi: 10.1093/europace/eur214 (Abstract)
  26. 26.
    Reddy VY, Shah D, Kautzner J et al (2012) The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study. Heart Rhythm 9(11):1789–1795. doi: 10.1016/j.hrthm.2012.07.016 PubMedCrossRefGoogle Scholar
  27. 27.
    Neuzil P, Reddy VY, Kautzner J et al (2013) Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I study. Circ Arrhythm Electrophysiol 6(2):327–333. doi: 10.1161/CIRCEP.113.000374 PubMedCrossRefGoogle Scholar
  28. 28.
    Okumura Y, Johnson SB, Bunch TJ et al (2008) A systematical analysis of in vivo contact forces on virtual catheter tip/tissue surface contact during cardiac mapping and intervention. J Cardiovasc Electrophysiol 19(6):632–640. doi: 10.1111/j.1540-8167.2008.01135.x PubMedCrossRefGoogle Scholar
  29. 29.
    Martinek M, Lemes C, Sigmund E et al (2012) Clinical impact of an open-irrigated radiofrequency catheter with direct force measurement on atrial fibrillation ablation. Pacing Clin Electrophysiol 35(11):1312–1318. doi: 10.1111/j.1540-8159.2012.03503.x PubMedCrossRefGoogle Scholar
  30. 30.
    Hoffmann E, Remp T, Gerth A et al (1993) Preablation 50 kHz impedance: a new parameter for assessing myocardial wall contact before radiofrequency catheter ablation. J Am Coll Cardiol 21:49AGoogle Scholar
  31. 31.
    Reithmann C, Remp T, Hoffmann E, Matis T, Wakili R, Steinbeck G (2005) Different patterns of the fall of impedance as the result of heating during ostial pulmonary vein ablation: implications for power titration. Pacing Clin Electrophysiol 28(12):1282–1291. doi: 10.1111/j.1540-8159.2005.00269.x PubMedCrossRefGoogle Scholar
  32. 32.
    Zheng X, Walcott GP, Hall JA, Rollins DL, Smith WM, Kay GN, Ideker RE (2000) Electrode impedance: an indicator of electrode–tissue contact and lesion dimensions during linear ablation. J Interv Card Electrophysiol 4(4):645–654PubMedCrossRefGoogle Scholar
  33. 33.
    Nath S, DiMarco JP, Gallop RG, McRury ID, Haines DE (1996) Effects of dispersive electrode position and surface area on electrical parameters and temperature during radiofrequency catheter ablation. Am J Cardiol 77(9):765–767PubMedCrossRefGoogle Scholar
  34. 34.
    Wittkampf FH, Nakagawa H (2006) RF catheter ablation: lessons on lesions. Pacing Clin Electrophysiol 29(11):1285–1297. doi: 10.1111/j.1540-8159.2006.00533.x PubMedCrossRefGoogle Scholar
  35. 35.
    Haldar S, Jarman JW, Panikker S, et al (2012) Contact force sensing technology identifies sites of inadequate contact and reduces acute pulmonary vein reconnection: A prospective case control study. Int J Cardiol. doi: 10.1016/j.ijcard.2012.11.072
  36. 36.
    Shah DC, Lambert H, Nakagawa H, Langenkamp A, Aeby N, Leo G (2010) Area under the real-time contact force curve (force–time integral) predicts radiofrequency lesion size in an in vitro contractile model. J Cardiovasc Electrophysiol 21(9):1038–1043. doi: 10.1111/j.1540-8167.2010.01750.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Reza Wakili
    • 1
    Email author
  • Sebastian Clauss
    • 1
  • Viola Schmidt
    • 1
  • Michael Ulbrich
    • 2
  • Anton Hahnefeld
    • 1
  • Franziska Schüssler
    • 1
  • Johannes Siebermair
    • 1
  • Stefan Kääb
    • 1
  • Heidi L. Estner
    • 1
  1. 1.Department of Medicine I, Klinikum GrosshadernUniversity of Munich and Munich Heart AllianceMunichGermany
  2. 2.Heart Center SiegburgSiegburgGermany

Personalised recommendations