Clinical Research in Cardiology

, Volume 101, Issue 9, pp 737–744 | Cite as

Screening for obstructive sleep apnea in veterans with ischemic heart disease using a computer-based clinical decision-support system

Original Paper

Abstract

Objectives

To assess the validity of a handheld clinical decision-support system (CDSS) in detecting obstructive sleep apnea (OSA) in veterans with ischemic heart disease against polysomnography (PSG) and to compare the diagnostic accuracy of the CDSS versus the Berlin questionnaire.

Methods

We enrolled prospectively 143 patients with underlying ischemic heart disease. Veterans with history of neurologic disease, systolic congestive heart failure, or receiving opiates were excluded from participation. Participants were asked to complete the Berlin Questionnaire and to answer all eight questions of CDSS-software. At the end of the interview, veterans were scheduled for an in-laboratory polysomnogram.

Results

Ninety one patients completed the study. The prevalence of OSA (AHI ≥5/h) was 74.7 % with a median AHI of 11.5/h (range 0–90). When compared to PSG, the CDSS and the Berlin questionnaire achieved a sensitivity of 98.5 % [95 % confidence interval (CI) 92.1–100] and 80.9 % (95 % CI 69.5–89.4) and a specificity of 86.9 % (95 % CI 66.4–97.2) and 39.1 % (95 % CI 19.7–61.5) at a threshold value of AHI ≥5 with a corresponding area under the curve of 0.93 (95 % CI 0.85–0.97) and 0.60 (95 % CI 0.49–0.70); respectively.

Conclusions

CDSS is a superior screening tool for identifying cardiac veterans with undiagnosed OSA than the BQ.

Keywords

Screening Sleep apnea Neural network Questionnaire 

Notes

Acknowledgments

We are indebted to Dr. Thomas Kufel and Dr. Jeffery Mador for their assistance in interpreting the sleep studies. This work was supported in part by VA Merit Review Award HSR&D 10-087-1 (AES). The opinions of the authors herein are the private views of the authors and are not to be construed as reflecting the views of the Department of Veterans Affairs.

References

  1. 1.
    Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328(17):1230–1235. doi: 10.1056/NEJM199304293281704 PubMedCrossRefGoogle Scholar
  2. 2.
    Jain V (2007) Clinical perspective of obstructive sleep apnea-induced cardiovascular complications. Antioxid Redox Signal 9(6):701–710. doi: 10.1089/ars.2007.1558 PubMedCrossRefGoogle Scholar
  3. 3.
    Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP (2010) Pathophysiology of sleep apnea. Physiol Rev 90(1):47–112. doi: 10.1152/physrev.00043.2008 PubMedCrossRefGoogle Scholar
  4. 4.
    Borgel J, Springer S, Ghafoor J, Arndt D, Duchna HW, Barthel A, Werner S, Van Helden J, Hanefeld C, Neubauer H, Bulut D, Mugge A (2010) Unrecognized secondary causes of hypertension in patients with hypertensive urgency/emergency: prevalence and co-prevalence. Clin Res Cardiol 99(8):499–506. doi: 10.1007/s00392-010-0148-4 PubMedCrossRefGoogle Scholar
  5. 5.
    Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, Daniels S, Floras JS, Hunt CE, Olson LJ, Pickering TG, Russell R, Woo M, Young T (2008) Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing in Collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation 118(10):1080–1111. doi: 10.1161/circulationaha.107.189420 PubMedCrossRefGoogle Scholar
  6. 6.
    Altekin RE, Yanikoglu A, Karakas MS, Ozel D, Kucuk M, Yilmaz H, Demir I (2012) Assessment of left atrial dysfunction in obstructive sleep apnea patients with the two dimensional speckle-tracking echocardiography. Clin Res Cardiol. doi: 10.1007/s00392-011-0404-2 PubMedGoogle Scholar
  7. 7.
    Marin JM, Carrizo SJ, Vicente E, Agusti AG (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365(9464):1046–1053. doi: 10.1016/S0140-6736(05)71141-7 PubMedGoogle Scholar
  8. 8.
    Haentjens P, Van Meerhaeghe A, Moscariello A, De Weerdt S, Poppe K, Dupont A, Velkeniers B (2007) The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome: evidence from a meta-analysis of placebo-controlled randomized trials. Arch Intern Med 167(8):757–764. doi: 10.1001/archinte.167.8.757 PubMedCrossRefGoogle Scholar
  9. 9.
    Alajmi M, Mulgrew AT, Fox J, Davidson W, Schulzer M, Mak E, Ryan CF, Fleetham J, Choi P, Ayas NT (2007) Impact of continuous positive airway pressure therapy on blood pressure in patients with obstructive sleep apnea hypopnea: a meta-analysis of randomized controlled trials. Lung 185(2):67–72. doi: 10.1007/s00408-006-0117-x PubMedCrossRefGoogle Scholar
  10. 10.
    Tasci S, Manka R, Scholtyssek S, Lentini S, Troatz C, Stoffel-Wagner B, Luderitz B (2006) NT-pro-BNP in obstructive sleep apnea syndrome is decreased by nasal continuous positive airway pressure. Clin Res Cardiol 95(1):23–30. doi: 10.1007/s00392-006-0315-9 PubMedCrossRefGoogle Scholar
  11. 11.
    Prinz C, Bitter T, Piper C, Horstkotte D, Faber L, Oldenburg O (2010) Sleep apnea is common in patients with coronary artery disease. Wien Med Wochenschr 160(13–14):349–355. doi: 10.1007/s10354-009-0737-x PubMedCrossRefGoogle Scholar
  12. 12.
    Martinez D, da Silva RP, Klein C, Fiori CZ, Massierer D, Cassol CM, Bos AJ, Gus M (2011) High risk for sleep apnea in the Berlin questionnaire and coronary artery disease. Sleep Breath. doi: 10.1007/s11325-010-0460-2 Google Scholar
  13. 13.
    de Jesus Danzi-SoaresN, Genta PR, Nerbass FB, Pedrosa RP, Soares FS, Cesar LA, Drager LF, Skomro R, Lorenzi-Filho G (2012) Obstructive sleep apnea is common among patients referred for coronary artery bypass grafting and can be diagnosed by portable monitoring. Coron Artery Dis 23(1):31–38. doi: 10.1097/MCA.0b013e32834df5d0 CrossRefGoogle Scholar
  14. 14.
    Drager LF, Genta PR, Pedrosa RP, Nerbass FB, Gonzaga CC, Krieger EM, Lorenzi-Filho G (2010) Characteristics and predictors of obstructive sleep apnea in patients with systemic hypertension. Am J Cardiol 105(8):1135–1139. doi: 10.1016/j.amjcard.2009.12.017 PubMedCrossRefGoogle Scholar
  15. 15.
    Arzt M, Young T, Peppard PE, Finn L, Ryan CM, Bayley M, Bradley TD (2010) Dissociation of obstructive sleep apnea from hypersomnolence and obesity in patients with stroke. Stroke 41(3):e129–e134. doi: 10.1161/STROKEAHA.109.566463 PubMedCrossRefGoogle Scholar
  16. 16.
    Hoffstein V, Szalai JP (1993) Predictive value of clinical features in diagnosing obstructive sleep apnea. Sleep 16(2):118–122PubMedGoogle Scholar
  17. 17.
    Maislin G, Pack AI, Kribbs NB, Smith PL, Schwartz AR, Kline LR, Schwab RJ, Dinges DF (1995) A survey screen for prediction of apnea. Sleep 18(3):158–166PubMedGoogle Scholar
  18. 18.
    Rowley JA, Aboussouan LS, Badr MS (2000) The use of clinical prediction formulas in the evaluation of obstructive sleep apnea. Sleep 23(7):929–938PubMedGoogle Scholar
  19. 19.
    Chung F, Yegneswaran B, Liao P, Chung SA, Vairavanathan S, Islam S, Khajehdehi A, Shapiro CM (2008) STOP questionnaire: a tool to screen patients for obstructive sleep apnea. Anesthesiology 108(5):812–821. doi: 10.1097/ALN.0b013e31816d83e4 PubMedCrossRefGoogle Scholar
  20. 20.
    Takegami M, Hayashino Y, Chin K, Sokejima S, Kadotani H, Akashiba T, Kimura H, Ohi M, Fukuhara S (2009) Simple four-variable screening tool for identification of patients with sleep-disordered breathing. Sleep 32(7):939–948PubMedGoogle Scholar
  21. 21.
    Viner S, Szalai JP, Hoffstein V (1991) Are history and physical examination a good screening test for sleep apnea? Ann Intern Med 115(5):356–359PubMedGoogle Scholar
  22. 22.
    Netzer NC, Stoohs RA, Netzer CM, Clark K, Strohl KP (1999) Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med 131(7):485–491PubMedGoogle Scholar
  23. 23.
    Ahmadi N, Chung SA, Gibbs A, Shapiro CM (2008) The Berlin questionnaire for sleep apnea in a sleep clinic population: relationship to polysomnographic measurement of respiratory disturbance. Sleep Breath 12(1):39–45. doi: 10.1007/s11325-007-0125-y PubMedCrossRefGoogle Scholar
  24. 24.
    Grol R, Grimshaw J (2003) From best evidence to best practice: effective implementation of change in patients’ care. Lancet 362(9391):1225–1230. doi: 10.1016/S0140-6736(03)14546-1 PubMedCrossRefGoogle Scholar
  25. 25.
    El-Solh AA, Mador MJ, Ten-Brock E, Shucard DW, Abul-Khoudoud M, Grant BJ (1999) Validity of neural network in sleep apnea. Sleep 22(1):105–111PubMedGoogle Scholar
  26. 26.
    Baxt WG (1991) Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med 115(11):843–848PubMedGoogle Scholar
  27. 27.
    Rechtschaffen A, Kales A (eds) (1968) A manual of standardized terminology, techniques and scoring system of sleep stages of human subjects. US Government Printing Office, Washington DC, NIH publication 204 Google Scholar
  28. 28.
    Pendlebury ST, Pepin JL, Veale D, Levy P (1997) Natural evolution of moderate sleep apnoea syndrome: significant progression over a mean of 17 months. Thorax 52(10):872–878PubMedCrossRefGoogle Scholar
  29. 29.
    Ancoli-Israel S, Kripke DF (1991) Prevalent sleep problems in the aged. Biofeedback Self Regul 16(4):349–359PubMedCrossRefGoogle Scholar
  30. 30.
    Kreis P, Kripke DF, Ancoli-Israel S (1983) Sleep apnea: a prospective study. West J Med 139(2):171–173PubMedGoogle Scholar
  31. 31.
    Flemons WW, Douglas NJ, Kuna ST, Rodenstein DO, Wheatley J (2004) Access to diagnosis and treatment of patients with suspected sleep apnea. Am J Respir Crit Care Med 169(6):668–672. doi: 10.1164/rccm.200308-1124PP PubMedCrossRefGoogle Scholar
  32. 32.
    Vanderveken OM, Boudewyns A, Ni Q, Kashyap B, Verbraecken J, De Backer W, Van de Heyning P (2011) Cardiovascular implications in the treatment of obstructive sleep apnea. J Cardiovasc Transl Res 4(1):53–60. doi: 10.1007/s12265-010-9238-y PubMedCrossRefGoogle Scholar
  33. 33.
    Strauss RS, Browner WS (2000) Risk for obstructive sleep apnea. Ann Intern Med 132(9):758–759PubMedGoogle Scholar
  34. 34.
    Gami AS, Pressman G, Caples SM, Kanagala R, Gard JJ, Davison DE, Malouf JF, Ammash NM, Friedman PA, Somers VK (2004) Association of atrial fibrillation and obstructive sleep apnea. Circulation 110(4):364–367. doi: 10.1161/01.CIR.0000136587.68725.8E PubMedCrossRefGoogle Scholar
  35. 35.
    Sagaspe P, Leger D, Taillard J, Bayon V, Chaumet G, Philip P (2010) Might the Berlin Sleep Questionnaire applied to bed partners be used to screen sleep apneic patients? Sleep Med 11(5):479–483. doi: 10.1016/j.sleep.2010.01.007 PubMedCrossRefGoogle Scholar
  36. 36.
    Wiggins CL, Schmidt-Nowara WW, Coultas DB, Samet JM (1990) Comparison of self- and spouse reports of snoring and other symptoms associated with sleep apnea syndrome. Sleep 13(3):245–252PubMedGoogle Scholar
  37. 37.
    Hirose H, Takayama T, Hozawa S, Hibi T, Saito I (2011) Prediction of metabolic syndrome using artificial neural network system based on clinical data including insulin resistance index and serum adiponectin. Comput Biol Med 41(11):1051–1056. doi: 10.1016/j.compbiomed.2011.09.005 PubMedCrossRefGoogle Scholar
  38. 38.
    Trtica-Majnaric L, Zekic-Susac M, Sarlija N, Vitale B (2010) Prediction of influenza vaccination outcome by neural networks and logistic regression. J Biomed Inform 43(5):774–781. doi: 10.1016/j.jbi.2010.04.011 PubMedCrossRefGoogle Scholar
  39. 39.
    Pasomsub E, Sukasem C, Sungkanuparph S, Kijsirikul B, Chantratita W (2010) The application of artificial neural networks for phenotypic drug resistance prediction: evaluation and comparison with other interpretation systems. Jpn J Infect Dis 63(2):87–94PubMedGoogle Scholar
  40. 40.
    Siristatidis CS, Chrelias C, Pouliakis A, Katsimanis E, Kassanos D (2010) Artificial neural networks in gynaecological diseases: current and potential future applications. Med Sci Monit 16(10):RA231–RA236PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Rachel Laporta
    • 1
  • Anil Anandam
    • 2
  • Ali A. El-Solh
    • 1
    • 2
    • 3
  1. 1.Medical Research, Bldg. 20 (151) VISN02VA Western New York Healthcare SystemBuffaloUSA
  2. 2.Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Western New York Respiratory Research CenterState University of New York at Buffalo School of Medicine and Biomedical Sciences and School of Public Health and Health ProfessionsBuffaloUSA
  3. 3.Department of Social and Preventive MedicineState University of New York at Buffalo School of Medicine and Biomedical Sciences and School of Public Health and Health ProfessionsBuffaloUSA

Personalised recommendations