Advertisement

Clinical Research in Cardiology

, Volume 101, Issue 2, pp 133–138 | Cite as

Caval flow reflects Fontan hemodynamics: quantification by magnetic resonance imaging

  • S. OvroutskiEmail author
  • S. Nordmeyer
  • O. Miera
  • P. Ewert
  • K. Klimes
  • T. Kühne
  • F. Berger
Original Paper

Abstract

Introduction

Failing Fontan circulation is a multifactorial problem without clear predictors and with uncertain onset. We sought to investigate the correlations between systemic venous flow return and the clinical condition of Fontan patients.

Methods

Flow measurements using phase contrast magnetic resonance imaging (MRI) were performed in the superior and inferior vena cava (SVC, IVC) in 61 Fontan patients. Median postoperative follow-up time was 6.7 (0.6–14.1) years; median age at MRI was 11.6 (4.0–44.6) years. Eight patients were identified clinically as a subgroup with suboptimal hemodynamics. The effective forward flow of combined SVC and IVC flow volume was defined as the venous cardiac index (vCI, l/min/m2). SVC flow ratio was defined as SVC flow in relation to vCI. The vCI and flow distribution between the SVC and IVC were investigated in relation to the hemodynamics and patients’ age at MRI.

Results

Venous flow return through the SVC was 1.1 (0.6–3.4) l/min/m2 and through the IVC 1.8 (0.6–3.2) l/min/m2; total vCI was 3 l/min/m2 (1.2–5.1). Patients with suboptimal Fontan hemodynamics showed significantly lower IVC flow return (median of 1.5 vs. 1.9 l/min/m2, p = 0.027) and increased SVC flow ratio (0.56 vs. 0.35, p = 0.005) in comparison to those with good clinical condition. The total vCI decrease was correlated with older patient age (r = 0.575, p < 0.001).

Conclusions

Altered systemic venous flow return is associated with suboptimal Fontan hemodynamics and seems to progress with patients’ age and long-term follow-up after Fontan operation. Thus, MRI flow volume measurements might help in monitoring Fontan patients before the onset of clinical signs of suboptimal hemodynamics.

Keywords

Fontan hemodynamics Venous return Flow volume measurements using MRI 

Notes

Acknowledgments

We thank Anne M. Gale for editorial assistance.

References

  1. 1.
    Gaynor JW, Bridges ND, Cohen MI, Mahle WT, Decampli WM, Steven JM, Nicolson SC, Spray TL (2002) Predictors of outcome after the fontan operation: is hypoplastic left heart syndrome still a risk factor? J Thorac Cardiovasc Surg 123:237–245PubMedCrossRefGoogle Scholar
  2. 2.
    Gentles TL, Mayer JE Jr, Gauvreau K, Newburger JW, Lock JE, Kupferschmid JP, Burnett J, Jonas RA, Castaneda AR, Wernovsky G (1997) Fontan operation in five hundred consecutive patients: factors influencing early and late outcome. J Thorac Cardiovasc Surg 114:376–391PubMedCrossRefGoogle Scholar
  3. 3.
    Gupta A, Daggett C, Behera S, Ferraro M, Wells W, Starnes V (2004) Risk factors for persistent pleural effusions after the extracardiac Fontan procedure. J Thorac Cardiovasc Surg 127:1664–1669PubMedCrossRefGoogle Scholar
  4. 4.
    Khairy P, Fernandes SM, Mayer JE Jr, Triedman JK, Walsh EP, Lock JE, Landzberg MJ (2008) Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation 117:85–92PubMedCrossRefGoogle Scholar
  5. 5.
    Mascio CE, Wayment M, Colaizy TT, Mahoney LT, Burkhart HM (2009) The modified Fontan procedure and prolonged pleural effusions. Am Surg 75:175–177PubMedGoogle Scholar
  6. 6.
    McGuirk SP, Winlaw DS, Langley SM, Stumper OF, de Giovanni JV, Wright JG, Brawn WJ, Barron DJ (2003) The impact of ventricular morphology on midterm outcome following completion total cavopulmonary connection. Eur J Cardiothorac Surg 24:37–46PubMedCrossRefGoogle Scholar
  7. 7.
    Ovroutski S, Ewert P, Alexi-Meskishvili V, Holscher K, Miera O, Peters B, Hetzer R, Berger F (2009) Absence of pulmonary artery growth after Fontan operation and its possible impact on late outcome. Ann Thorac Surg 87:826–831PubMedCrossRefGoogle Scholar
  8. 8.
    Feldt RH, Driscoll DJ, Offord KP, Cha RH, Perrault J, Schaff HV, Puga FJ, Danielson GK (1996) Protein-losing enteropathy after the Fontan operation. J Thorac Cardiovasc Surg 112:672–680PubMedCrossRefGoogle Scholar
  9. 9.
    Gewillig M, Brown SC, Eyskens B, Heying R, Ganame J, Budts W, Gerche AL, Gorenflo M (2010) The Fontan circulation: who controls cardiac output? Interact Cardiovasc Thorac Surg 10:428–433PubMedCrossRefGoogle Scholar
  10. 10.
    Schmitt B, Steendijk P, Ovroutski S, Lunze K, Rahmanzadeh P, Maarouf N, Ewert P, Berger F, Kuehne T (2010) Pulmonary vascular resistance, collateral flow, and ventricular function in patients with a Fontan circulation at rest and during dobutamine stress. Circ Cardiovasc Imaging 3:623–631PubMedCrossRefGoogle Scholar
  11. 11.
    Beerbaum P, Barth P, Kropf S, Sarikouch S, Kelter-Kloepping A, Franke D, Gutberlet M, Kuehne T (2009) Cardiac function by MRI in congenital heart disease: impact of consensus training on interinstitutional variance. J Magn Reson Imaging 30:956–966PubMedCrossRefGoogle Scholar
  12. 12.
    Klimes K, Abdul-Khaliq H, Ovroutski S, Hui W, Alexi-Meskishvili V, Spors B, Hetzer R, Felix R, Lange PE, Berger F, Gutberlet M (2007) Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac Fontan: a magnetic resonance study. Clin Res Cardiol 96:160–167PubMedCrossRefGoogle Scholar
  13. 13.
    Fogel MA, Weinberg PM, Rychik J, Hubbard A, Jacobs M, Spray TL, Haselgrove J (1999) Caval contribution to flow in the branch pulmonary arteries of Fontan patients with a novel application of magnetic resonance presaturation pulse. Circulation 99:1215–1221PubMedGoogle Scholar
  14. 14.
    Hjortdal VE, Christensen TD, Larsen SH, Emmertsen K, Pedersen EM (2008) Caval blood flow during supine exercise in normal and Fontan patients. Ann Thorac Surg 85:599–603PubMedCrossRefGoogle Scholar
  15. 15.
    Takawira F, Ayer JG, Onikul E, Hawker RE, Kemp A, Nicholson IA, Sholler GF (2008) Evaluation of the extracardiac conduit modification of the Fontan operation for thrombus formation using magnetic resonance imaging. Heart Lung Circ 17:407–410PubMedCrossRefGoogle Scholar
  16. 16.
    Robbers-Visser D, Jan Ten Harkel D, Kapusta L, Strengers JL, Dalinghaus M, Meijboom FJ, Pattynama PM, Bogers AJ, Helbing WA (2008) Usefulness of cardiac magnetic resonance imaging combined with low-dose dobutamine stress to detect an abnormal ventricular stress response in children and young adults after Fontan operation at young age. Am J Cardiol 101:1657–1662PubMedCrossRefGoogle Scholar
  17. 17.
    Sundareswaran KS, Kanter KR, Kitajima HD, Krishnankutty R, Sabatier JF, Parks WJ, Sharma S, Yoganathan AP, Fogel M (2006) Impaired power output and cardiac index with hypoplastic left heart syndrome: a magnetic resonance imaging study. Ann Thorac Surg 82:1267–1275 (discussion 1275–1277)PubMedCrossRefGoogle Scholar
  18. 18.
    Festa P, Ait Ali L, Bernabei M, De Marchi D (2005) The role of magnetic resonance imaging in the evaluation of the functionally single ventricle before and after conversion to the Fontan circulation. Cardiol Young 15:51–56PubMedCrossRefGoogle Scholar
  19. 19.
    Fogel MA, Donofrio MT, Ramaciotti C, Hubbard AM, Weinberg PM (1994) Magnetic resonance and echocardiographic imaging of pulmonary artery size throughout stages of Fontan reconstruction. Circulation 90:2927–2936PubMedGoogle Scholar
  20. 20.
    Mohiaddin RH, Wann SL, Underwood R, Firmin DN, Rees S, Longmore DB (1990) Vena caval flow: assessment with cine MR velocity mapping. Radiology 177:537–541PubMedGoogle Scholar
  21. 21.
    Redington AN, Penny D, Shinebourne EA (1991) Pulmonary blood flow after total cavopulmonary shunt. Br Heart J 65:213–217PubMedCrossRefGoogle Scholar
  22. 22.
    Hsia TY, Khambadkone S, Bradley SM, de Leval MR (2007) Subdiaphragmatic venous hemodynamics in patients with biventricular and Fontan circulation after diaphragm plication. J Thorac Cardiovasc Surg 134:1397–1405 (discussion 1405)PubMedCrossRefGoogle Scholar
  23. 23.
    Lardo AC, Webber SA, Friehs I, del Nido PJ, Cape EG (1999) Fluid dynamic comparison of intra-atrial and extracardiac total cavopulmonary connections. J Thorac Cardiovasc Surg 117:697–704PubMedCrossRefGoogle Scholar
  24. 24.
    Sarikouch S, Peters B, Gutberlet M, Leismann B, Kelter-Kloepping A, Koerperich H, Kuehne T, Beerbaum P (2010) Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging 3:65–76PubMedCrossRefGoogle Scholar
  25. 25.
    Ovroutski S, Ewert P, Miera O, Alexi-Meskishvili V, Peters B, Hetzer R, Berger F (2010) Long-term cardiopulmonary exercise capacity after modified Fontan operation. Eur J Cardiothorac Surg 37(1):204–209PubMedCrossRefGoogle Scholar
  26. 26.
    Ohuchi H, Hamamichi Y, Hayashi T, Watanabe T, Yamada O, Yagihara T, Echigo S (2005) Post-exercise heart rate, blood pressure and oxygen uptake dynamics in pediatric patients with Fontan circulation comparison with patients after right ventricular outflow tract reconstruction. Int J Cardiol 101:129–136PubMedCrossRefGoogle Scholar
  27. 27.
    Ohuchi H, Yasuda K, Hasegawa S, Miyazaki A, Takamuro M, Yamada O, Ono Y, Uemura H, Yagihara T, Echigo S (2001) Influence of ventricular morphology on aerobic exercise capacity in patients after the Fontan operation. J Am Coll Cardiol 37:1967–1974PubMedCrossRefGoogle Scholar
  28. 28.
    Ascuitto RJ, Ross-Ascuitto NT (2004) Systematic-to-pulmonary collaterals: a source of flow energy loss in Fontan physiology. Pediatr Cardiol 25:472–481PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • S. Ovroutski
    • 1
    Email author
  • S. Nordmeyer
    • 1
  • O. Miera
    • 1
  • P. Ewert
    • 1
  • K. Klimes
    • 1
  • T. Kühne
    • 1
  • F. Berger
    • 1
  1. 1.Department of Congenital Heart DiseasesDeutsches Herzzentrum Berlin (German Heart Institute Berlin)BerlinGermany

Personalised recommendations