Clinical Research in Cardiology

, Volume 100, Issue 11, pp 983–992 | Cite as

Maladaptive hypertrophy after acute myocardial infarction positive effect of bone marrow-derived stem cell therapy on regional remodeling measured by cardiac MRI

  • Andreas Rolf
  • Birgit Assmus
  • Volker Schächinger
  • Johannes Rixe
  • Susanne Möllmann
  • Helge Möllmann
  • Stefanie Dimmeler
  • Andreas M. Zeiher
  • Christian W. Hamm
  • Thorsten Dill
Original Paper

Abstract

Objective

In the aftermath of myocardial infarction, increased loading conditions will trigger hypertrophy of viable myocardium. This in turn causes deterioration of regional contractility. Cardiac magnetic resonance imaging (cMRI) allows the exact differentiation of viable and infarcted myocardium and therefore the measurement of regional wall thickness and function. Bone marrow-derived stem cell (BMC) transfer has been shown to improve global function and remodeling. The present study examines the effect of BMC transfer on regional remodeling and function after myocardial infarction by cMRI.

Design

Fifty-four patients of the MR substudy of the REPAIR-AMI trial have been studied at baseline and 12-month follow-up. Enddiastolic wall thickness (EDWT) and wall thickening (WT%) have been measured on SSFP cine sequences.

Results

Enddiastolic wall thickness decreased in both placebo and BMC groups in viable as well as infarcted segments. The effect was largest in the pre-specified subgroup of patients below the median EF of 48.9% (infarcted segments −1.14 mm Placebo vs. −1.91 mm BMC, p for interaction 0.01, remote segments −0.19 mm Placebo vs. −0.94 mm BMC, p for interaction 0.00001). Corrected for baseline values BMC therapy yielded smaller EDWT at 12 months in infarcted and remote segments (infarcted 7.58 mm Placebo vs. 6.13 mm BMC p = 0.0001, remote 8.76 mm Placebo vs. 7.32 mm BMC, p = 0.0001). This was associated with better contractility within the infarcted segments among BMC patients (WT% 24.17% Placebo vs. 49.31% BMC, p = 0.0001). The WT% was inversely correlated with EDWT (r = −0.37, p = 0.0001).

Conclusion

Bone marrow-derived stem cell therapy yields smaller EDWT when compared with placebo patients suggesting a positive effect on maladaptive hypertrophy of viable myocardium. This notion is supported by the enhanced regional contractility within the BMC group which is inversely correlated with EDWT.

Keywords

MRI Stem cells Remodeling 

References

  1. 1.
    McKay RG, Pfeffer MA, Pasternak RC, Markis JE, Come PC, Nakao S, Alderman JD, Ferguson JJ, Safian RD, Grossman W (1986) Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation 74(4):693–702PubMedCrossRefGoogle Scholar
  2. 2.
    Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81(4):1161–1172PubMedCrossRefGoogle Scholar
  3. 3.
    Olivetti G, Capasso JM, Meggs LG, Sonnenblick EH, Anversa P (1991) Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circ Res 68(3):856–869PubMedGoogle Scholar
  4. 4.
    Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56(1):56–64PubMedCrossRefGoogle Scholar
  5. 5.
    Meijs MF, de Windt LJ, de Jonge N, Cramer MJ, Bots ML, Mali WP, Doevendans PA (2007) Left ventricular hypertrophy: a shift in paradigm. Curr Med Chem 14(2):157–171PubMedCrossRefGoogle Scholar
  6. 6.
    Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367(9507):356–367. doi:10.1016/S0140-6736(06)68074-4 PubMedCrossRefGoogle Scholar
  7. 7.
    Kim R, Choi K, Judd R (2003) Assessment of myocardial viability by contrast enhancement. In: Higgins C, deRoos A (eds) Cardiovascular MRI and MRA. Lippincott Williams & Wilkins, Philadelphia, pp 209–236Google Scholar
  8. 8.
    Jensen CJ, Bleckmann D, Eberle HC, Nassenstein K, Schlosser T, Sabin GV, Naber CK, Bruder O (2009) A simple MR algorithm for estimation of myocardial salvage following acute ST segment elevation myocardial infarction. Clin Res Cardiol 98(10):651–656. doi:10.1007/s00392-009-0051-z PubMedCrossRefGoogle Scholar
  9. 9.
    Neizel M, Futterer S, Steen H, Giannitsis E, Reinhardt L, Lossnitzer D, Lehrke S, Jaffe AS, Katus HA (2009) Predicting microvascular obstruction with cardiac troponin T after acute myocardial infarction: a correlative study with contrast-enhanced magnetic resonance imaging. Clin Res Cardiol 98(9):555–562. doi:10.1007/s00392-009-0041-1 PubMedCrossRefGoogle Scholar
  10. 10.
    Neizel M, Katoh M, Schade E, Rassaf T, Krombach GA, Kelm M, Kuhl HP (2009) Rapid and accurate determination of relative infarct size in humans using contrast-enhanced magnetic resonance imaging. Clin Res Cardiol 98(5):319–324. doi:10.1007/s00392-009-0007-3 PubMedCrossRefGoogle Scholar
  11. 11.
    Neizel M, Steen H, Korosoglou G, Lossnitzer D, Lehrke S, Ivandic BT, Katus HA, Giannitsis E (2009) Minor troponin T elevation in patients 6 months after acute myocardial infarction: an observational study. Clin Res Cardiol 98(5):297–304. doi:10.1007/s00392-009-0002-8 PubMedCrossRefGoogle Scholar
  12. 12.
    Pitt B (2005) Sudden death in patients with myocardial infarction. N Engl J Med 353(12):1294–1297. doi:10.1056/NEJMc051992 author reply 1294–1297PubMedCrossRefGoogle Scholar
  13. 13.
    Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101(25):2981–2988PubMedGoogle Scholar
  14. 14.
    Stone GW, Grines CL, Cox DA, Garcia E, Tcheng JE, Griffin JJ, Guagliumi G, Stuckey T, Turco M, Carroll JD, Rutherford BD, Lansky AJ (2002) Comparison of angioplasty with stenting, with or without abciximab, in acute myocardial infarction. N Engl J Med 346(13):957–966. doi:10.1056/NEJMoa013404 PubMedCrossRefGoogle Scholar
  15. 15.
    Cowan BR, Young AA, Anderson C, Doughty RN, Krittayaphong R, Lonn E, Marwick TH, Reid CM, Sanderson JE, Schmieder RE, Teo K, Wadham AK, Worthley SG, Yu CM, Yusuf S, Jennings GL (2009) The cardiac MRI substudy to ongoing telmisartan alone and in combination with ramipril global endpoint trial/telmisartan randomized assessment study in ACE-intolerant subjects with cardiovascular disease: analysis protocol and baseline characteristics. Clin Res Cardiol 98(7):421–433. doi:10.1007/s00392-009-0014-4 PubMedCrossRefGoogle Scholar
  16. 16.
    Eitel I, Friedenberger J, Fuernau G, Dumjahn A, Desch S, Schuler G, Thiele H Intracoronary versus intravenous bolus abciximab application in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention: 6-month effects on infarct size and left ventricular function: the randomised Leipzig immediate percutaneous coronary intervention abciximab i.v. versus i.c. in ST-Elevation myocardial infarction trial (LIPSIAbciximab-STEMI). Clin Res Cardiol 100(5):425–432. doi:10.1007/s00392-010-0260-5
  17. 17.
    Muller UM, Eitel I, Eckrich K, Erbs S, Linke A, Mobius-Winkler S, Mende M, Schuler GC, Thiele H Impact of minimising door-to-balloon times in ST-elevation myocardial infarction to less than 30 min on outcome: an analysis over an 8-year period in a tertiary care centre. Clin Res Cardiol 100(4):297–309. doi:10.1007/s00392-010-0242-7
  18. 18.
    Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Suselbeck T, Assmus B, Tonn T, Dimmeler S, Zeiher AM (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221. doi:10.1056/NEJMoa060186 PubMedCrossRefGoogle Scholar
  19. 19.
    Baks T, van Geuns RJ, Biagini E, Wielopolski P, Mollet NR, Cademartiri F, van der Giessen WJ, Krestin GP, Serruys PW, Duncker DJ, de Feyter PJ (2006) Effects of primary angioplasty for acute myocardial infarction on early and late infarct size and left ventricular wall characteristics. J Am Coll Cardiol 47(1):40–44. doi:10.1016/j.jacc.2005.09.008 PubMedCrossRefGoogle Scholar
  20. 20.
    Jung C, Fischer N, Fritzenwanger M, Thude H, Ferrari M, Fabris M, Brehm BR, Barz D, Figulla HR (2009) Endothelial progenitor cells in adolescents: impact of overweight, age, smoking, sport and cytokines in younger age. Clin Res Cardiol 98(3):179–188. doi:10.1007/s00392-008-0739-5 PubMedCrossRefGoogle Scholar
  21. 21.
    Dill T, Schachinger V, Rolf A, Mollmann S, Thiele H, Tillmanns H, Assmus B, Dimmeler S, Zeiher AM, Hamm C (2009) Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. Am Heart J 157(3):541–547. doi:10.1016/j.ahj.2008.11.011 PubMedCrossRefGoogle Scholar
  22. 22.
    Reimer KA, Jennings RB (1979) The changing anatomic reference base of evolving myocardial infarction. Underestimation of myocardial collateral blood flow and overestimation of experimental anatomic infarct size due to tissue edema, hemorrhage and acute inflammation. Circulation 60(4):866–876PubMedGoogle Scholar
  23. 23.
    Richard V, Murry CE, Reimer KA (1995) Healing of myocardial infarcts in dogs. Effects of late reperfusion. Circulation 92(7):1891–1901PubMedGoogle Scholar
  24. 24.
    Rochitte CE, Lima JA, Bluemke DA, Reeder SB, McVeigh ER, Furuta T, Becker LC, Melin JA (1998) Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 98(10):1006–1014PubMedGoogle Scholar
  25. 25.
    Sun Y (2007) Oxidative stress and cardiac repair/remodeling following infarction. Am J Med Sci 334(3):197–205. doi:10.1097/MAJ.0b013e318157388f PubMedCrossRefGoogle Scholar
  26. 26.
    Morales C, Gonzalez GE, Rodriguez M, Bertolasi CA, Gelpi RJ (2002) Histopathologic time course of myocardial infarct in rabbit hearts. Cardiovasc Pathol 11(6):339–345. S1054880702001151[pii]PubMedCrossRefGoogle Scholar
  27. 27.
    van Krimpen C, Smits JF, Cleutjens JP, Debets JJ, Schoemaker RG, Struyker Boudier HA, Bosman FT, Daemen MJ (1991) DNA synthesis in the non-infarcted cardiac interstitium after left coronary artery ligation in the rat: effects of captopril. J Mol Cell Cardiol 23(11):1245–1253PubMedCrossRefGoogle Scholar
  28. 28.
    Waldenstrom A, Martinussen HJ, Gerdin B, Hallgren R (1991) Accumulation of hyaluronan and tissue edema in experimental myocardial infarction. J Clin Invest 88(5):1622–1628. doi:10.1172/JCI115475 PubMedCrossRefGoogle Scholar
  29. 29.
    Yang Z, Berr SS, Gilson WD, Toufektsian MC, French BA (2004) Simultaneous evaluation of infarct size and cardiac function in intact mice by contrast-enhanced cardiac magnetic resonance imaging reveals contractile dysfunction in noninfarcted regions early after myocardial infarction. Circulation 109(9):1161–1167. doi:10.1161/01.CIR.0000118495.88442.32 PubMedCrossRefGoogle Scholar
  30. 30.
    Turschner O, Jan DH, Dommke C, Claus P, Verbeken E, De Scheerder I, Bijnens B, Sutherland GR (2004) The sequential changes in myocardial thickness and thickening which occur during acute transmural infarction, infarct reperfusion and the resultant expression of reperfusion injury. Eur Heart J 25(9):794–803PubMedCrossRefGoogle Scholar
  31. 31.
    Merli E, Sutherland GR, Bijnens B, Fischer A, Chaparro M, Karu T, Sutcliffe S, Marciniak A, Baltabaeva A, Bunce N, Brecker S (2008) Usefulness of changes in left ventricular wall thickness to predict full or partial pressure reperfusion in ST-elevation acute myocardial infarction. Am J Cardiol 102(3):249–256. doi:10.1016/j.amjcard.2008.03.047 PubMedCrossRefGoogle Scholar
  32. 32.
    Guo J, Lin GS, Bao CY, Hu ZM, Hu MY (2007) Anti-inflammation role for mesenchymal stem cells transplantation in myocardial infarction. Inflammation 30(3–4):97–104. doi:10.1007/s10753-007-9025-3 PubMedCrossRefGoogle Scholar
  33. 33.
    Kramer CM, Lima JA, Reichek N, Ferrari VA, Llaneras MR, Palmon LC, Yeh IT, Tallant B, Axel L (1993) Regional differences in function within noninfarcted myocardium during left ventricular remodeling. Circulation 88(3):1279–1288PubMedGoogle Scholar
  34. 34.
    Kramer CM, Rogers WJ, Park CS, Seibel PS, Shaffer A, Theobald TM, Reichek N, Onodera T, Gerdes AM (1998) Regional myocyte hypertrophy parallels regional myocardial dysfunction during post-infarct remodeling. J Mol Cell Cardiol 30(9):1773–1778PubMedCrossRefGoogle Scholar
  35. 35.
    Bridgman P, Aronovitz MA, Kakkar R, Oliverio MI, Coffman TM, Rand WM, Konstam MA, Mendelsohn ME, Patten RD (2005) Gender-specific patterns of left ventricular and myocyte remodeling following myocardial infarction in mice deficient in the angiotensin II type 1a receptor. Am J Physiol Heart Circ Physiol 289(2):H586–H592. doi:10.1152/ajpheart.00474.2004 PubMedCrossRefGoogle Scholar
  36. 36.
    Sun Y, Cleutjens JP, Diaz-Arias AA, Weber KT (1994) Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc Res 28(9):1423–1432. 0008-6363(94)90094-9[pii]PubMedCrossRefGoogle Scholar
  37. 37.
    Fieno DS, Hillenbrand HB, Rehwald WG, Harris KR, Decker RS, Parker MA, Klocke FJ, Kim RJ, Judd RM (2004) Infarct resorption, compensatory hypertrophy, and differing patterns of ventricular remodeling following myocardial infarctions of varying size. J Am Coll Cardiol 43(11):2124–2131PubMedCrossRefGoogle Scholar
  38. 38.
    Ripa RS, Nilsson JC, Wang Y, Sondergaard L, Jorgensen E, Kastrup J (2007) Short- and long-term changes in myocardial function, morphology, edema, and infarct mass after ST-segment elevation myocardial infarction evaluated by serial magnetic resonance imaging. Am Heart J 154(5):929–936. doi:10.1016/j.ahj.2007.06.038 PubMedCrossRefGoogle Scholar
  39. 39.
    Bogaert J, Kalantzi M, Rademakers FE, Dymarkowski S, Janssens S (2007) Determinants and impact of microvascular obstruction in successfully reperfused ST-segment elevation myocardial infarction. Assessment by magnetic resonance imaging. Eur RadiolGoogle Scholar
  40. 40.
    Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, Kalantzi M, Herbots L, Sinnaeve P, Dens J, Maertens J, Rademakers F, Dymarkowski S, Gheysens O, Van Cleemput J, Bormans G, Nuyts J, Belmans A, Mortelmans L, Boogaerts M, Van de Werf F (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367(9505):113–121. doi:10.1016/S0140-6736(05)67861-0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Andreas Rolf
    • 1
  • Birgit Assmus
    • 2
  • Volker Schächinger
    • 4
  • Johannes Rixe
    • 1
  • Susanne Möllmann
    • 1
  • Helge Möllmann
    • 1
  • Stefanie Dimmeler
    • 3
  • Andreas M. Zeiher
    • 2
  • Christian W. Hamm
    • 1
  • Thorsten Dill
    • 5
  1. 1.Department of CardiologyKerckhoff-Heart CenterBad NauheimGermany
  2. 2.Department of CardiologyUniversity HospitalFrankfurtGermany
  3. 3.Department of Experimental CardiologyUniversity of FrankfurtFrankfurtGermany
  4. 4.Department of CardiologyKlinikum FuldaFuldaGermany
  5. 5.Department of CardiologySana Klinikum Düsseldorf BenrathDüsseldorfGermany

Personalised recommendations