Clinical Research in Cardiology

, Volume 100, Issue 8, pp 661–668 | Cite as

Septic cardiomyopathy: hemodynamic quantification, occurrence, and prognostic implications

  • Karl Werdan
  • Anja Oelke
  • Stefan Hettwer
  • Sebastian Nuding
  • Sebastian Bubel
  • Robert Hoke
  • Martin Ruß
  • Christine Lautenschläger
  • Ursula Mueller-Werdan
  • Henning EbeltEmail author
Original Paper



In sepsis, severe reduction of afterload may often mask cardiac impairment. By establishing the parameter “afterload-related cardiac performance (ACP)” we wanted to determine the extent, frequency, and prognostic relevance of septic cardiomyopathy.


Over a 12 months period, all patients of our medical intensive care ward were included into the study when they were classified as having “septic MODS” (sepsis score ≥12 as long as APACHE II score was ≥20). Hemodynamic assessments were performed using a pulmonary artery catheter.


A total of 524 patients were screened, and from these 39 had septic MODS. In survivors, APACHE II score values declined from day 0 (day of diagnosis, 27.6 ± 8.0) to day 4 (17.8 ± 8.0), while in non-survivors, score values remained high (day 0: 31.8 ± 5.7; day 4: 33.2 ± 6.7; p < 0.001). Hemodynamic measurements showed an inverse correlation of cardiac output (COmeasured) and SVR which can be described as CO = β 0 × SVR β1. The upper limit of 80% tolerance range of CO was defined as the “normal” CO values (COnormal). The parameter “afterload-related cardiac performance (ACP)” was calculated as ACP (%) = COmeasured/COnormal × 100. It turned out that ACP shows a stronger correlation with APACHE II- and sepsis-score than CO, cardiac index (CI), cardiac power (CPO), or cardiac power index (CPI). Furthermore, ACP correlated with sepsis-induced myocardial damage as indicated by elevations of troponin I and significantly differed between surviving (86.9 ± 1.6%) and non-surviving patients (69.2 ± 1.4%; p < 0.0001). While 75% of the surviving patients showed an ACP >60%, 38% of the non-survivors had a moderate (ACP 40–60%) and 25% a severe impairment of cardiac function (ACP < 40%).


By using the parameter “afterload-related cardiac performance, ACP”, the impairment of cardiac function can be reliably quantified showing that septic cardiomyopathy occurs frequently and is of prognostic relevance in patients with septic MODS.


Sepsis Septic shock Septic cardiomyopathy Cardiac output Cardiac power Afterload-related cardiac performance 


  1. 1.
    Reinhart K, Brunkhorst F, Bone Hg et al (2006) Diagnose und Therapie der Sepsis. Clin Res Cardiol 95:429–454PubMedCrossRefGoogle Scholar
  2. 2.
    Parrillo Je (1989) The cardiovascular pathophysiology of sepsis. Ann Rev Med 40:469–485PubMedCrossRefGoogle Scholar
  3. 3.
    Werdan K, Schmidt H, Ebelt H et al (2009) Impaired regulation of cardiac function in sepsis, SIRS, and MODS. Can J Physiol Pharmacol 87:266–274PubMedCrossRefGoogle Scholar
  4. 4.
    Kindermann M, Seeland U, Ruhnke P (2010) Functional effects of beta(1)-adrenoceptor polymorphisms on the hemodynamic response to dobutamine with and without beta-blocker administration. Clin Res Cardiol. doi: 10.1007/s00392-00010-00221-z
  5. 5.
    Vieillard-Baron A, Prin S, Chergui K et al (2003) Hemodynamic instability in sepsis: bedside assessment by Doppler echocardiography. Am J Respir Crit Care Med 168:1270–1276PubMedCrossRefGoogle Scholar
  6. 6.
    Elebute Ea, Stoner Hb (1983) The grading of sepsis. Br J Surg 70:29–31PubMedCrossRefGoogle Scholar
  7. 7.
    Werdan K, Pilz G, Bujdoso O et al (2007) Score-based immunoglobulin G therapy of patients with sepsis: the SBITS study. Crit Care Med 35:2693–2701PubMedCrossRefGoogle Scholar
  8. 8.
    Elliott P, Andersson B, Arbustini E et al (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29:270–276PubMedCrossRefGoogle Scholar
  9. 9.
    Bouhemad B, Nicolas-Robin A, Arbelot C et al (2009) Acute left ventricular dilatation and shock-induced myocardial dysfunction. Crit Care Med 37:441–447PubMedCrossRefGoogle Scholar
  10. 10.
    Merx Mw, Weber C (2007) Sepsis and the heart. Circulation 116:793–802PubMedCrossRefGoogle Scholar
  11. 11.
    Werdan K, Muller-Werdan U (1996) Elucidating molecular mechanisms of septic cardiomyopathy–the cardiomyocyte model. Mol Cell Biochem 163–164:291–303PubMedCrossRefGoogle Scholar
  12. 12.
    Zorn-Pauly K, Pelzmann B, Lang P et al (2007) Endotoxin impairs the human pacemaker current If. Shock 28:655–661PubMedGoogle Scholar
  13. 13.
    Fincke R, Hochman Js, Lowe Am et al (2004) Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol 44:340–348PubMedCrossRefGoogle Scholar
  14. 14.
    Pilz G, Mcginn P, Boekstegers P et al (1994) Pseudomonas sepsis does not cause more severe cardiovascular dysfunction in patients than non-Pseudomonas sepsis. Circ Shock 42:174–182PubMedGoogle Scholar
  15. 15.
    Levy Rj, Piel Da, Acton Pd et al (2005) Evidence of myocardial hibernation in the septic heart. Crit Care Med 33:2752–2756PubMedCrossRefGoogle Scholar
  16. 16.
    Spies C, Haude V, Fitzner R et al (1998) Serum cardiac troponin T as a prognostic marker in early sepsis. Chest 113:1055–1063PubMedCrossRefGoogle Scholar
  17. 17.
    Wu Ah (2001) Increased troponin in patients with sepsis and septic shock: myocardial necrosis or reversible myocardial depression? Intensive Care Med 27:959–961PubMedCrossRefGoogle Scholar
  18. 18.
    Brueckmann M, Huhle G, Lang S et al (2005) Prognostic value of plasma N-terminal pro-brain natriuretic peptide in patients with severe sepsis. Circulation 112:527–534PubMedCrossRefGoogle Scholar
  19. 19.
    Charpentier J, Luyt Ce, Fulla Y et al (2004) Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis. Crit Care Med 32:660–665PubMedCrossRefGoogle Scholar
  20. 20.
    Witthaut R, Busch C, Fraunberger P et al (2003) Plasma atrial natriuretic peptide and brain natriuretic peptide are increased in septic shock: impact of interleukin-6 and sepsis-associated left ventricular dysfunction. Intensive Care Med 29:1696–1702PubMedCrossRefGoogle Scholar
  21. 21.
    Mclean As (1996) Echocardiography assessment of left ventricular function in the critically ill. Anaesth Intensive Care 24:60–65PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Karl Werdan
    • 1
  • Anja Oelke
    • 1
  • Stefan Hettwer
    • 1
  • Sebastian Nuding
    • 1
  • Sebastian Bubel
    • 1
  • Robert Hoke
    • 1
  • Martin Ruß
    • 1
  • Christine Lautenschläger
    • 2
  • Ursula Mueller-Werdan
    • 1
  • Henning Ebelt
    • 1
    Email author
  1. 1.Department of Medicine IIIUniversity of Halle (Saale)HalleGermany
  2. 2.Institute of Medical Epidemiology, Biometrics, and StatisticsUniversity of Halle (Saale)HalleGermany

Personalised recommendations