Clinical Research in Cardiology

, Volume 100, Issue 1, pp 11–19 | Cite as

Heart rate reduction in cardiovascular disease and therapy

  • Jan-Christian Reil
  • Florian Custodis
  • Karl Swedberg
  • Michel Komajda
  • Jeffrey S. Borer
  • Ian Ford
  • Luigi Tavazzi
  • Ulrich Laufs
  • Michael Böhm
Review

Abstract

Heart rate influences myocardial oxygen demand, coronary blood flow, and myocardial function. Clinical and experimental studies support an association between elevated resting heart rate and a broad range of maladaptive effects on the function and structure of the cardiovascular system. Heart rate has been shown to be an important predictor of mortality in cardiovascular disorders such as coronary artery disease, myocardial infarction, and chronic heart failure. This review summarizes the specific influence of heart rate on vascular morphology and function as well as on myocardial lesions leading from early impact on vascular homeostasis to myocardial hemodynamics in chronic heart failure. Heart rate can be easily determined during physical examination of the patient and therefore allows a simple hint on prognosis and efficiency of therapy.

Keywords

Heart rate Selective heart rate reduction Coronary heart disease Heart failure 

Notes

Conflicts of interest

None.

References

  1. 1.
    Heusch G (2008) Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents. Br J Pharmacol 153(8):1589–1601CrossRefPubMedGoogle Scholar
  2. 2.
    Reil JC, Böhm M (2007) The role of heart rate in the development of cardiovascular disease. Clin Res Cardiol 96(9):585–592CrossRefPubMedGoogle Scholar
  3. 3.
    Levy RL, White PD, Stroud WD (1945) Transient tachycardia: prognostic significance alone and in association with transient hypertension. JAMA 129:585–588Google Scholar
  4. 4.
    Kannel WB, Kannel C, Paffenbarger RS Jr, Cupples LA (1987) Heart rate and cardiovascular mortality: the Framingham study. Am Heart J 113(6):1489–1494CrossRefPubMedGoogle Scholar
  5. 5.
    Fox K, Borer JS, Camm AJ, Danchin N, Ferrari R, Lopez Sendon JL, Steg PG, Tardif JC, Tavazzi L, Tendera M (2007) Resting heart rate in cardiovascular disease. J Am Coll Cardiol 50(9):823–830CrossRefPubMedGoogle Scholar
  6. 6.
    Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, Dallongeville J, De Backer G, Ebrahim S, Gjelsvik B, Herrmann-Lingen C, Hoes A, Humphries S, Knapton M, Perk J, Priori SG, Pyorala K, Reiner Z, Ruilope L, Sans-Menendez S, Scholte op Reimer W, Weissberg P, Wood D, Yarnell J, Zamorano JL, Walma E, Fitzgerald T, Cooney MT, Dudina A, Vahanian A, Camm J, De Caterina R, Dean V, Dickstein K, Funck-Brentano C, Filippatos G, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Altiner A, Bonora E, Durrington PN, Fagard R, Giampaoli S, Hemingway H, Hakansson J, Kjeldsen SE, Larsen ML, Mancia G, Manolis AJ, Orth-Gomer K, Pedersen T, Rayner M, Ryden L, Sammut M, Schneiderman N, Stalenhoef AF, Tokgozoglu L, Wiklund O, Zampelas A (2007) European guidelines on cardiovascular disease prevention in clinical practice: executive summary. Eur Heart J 28(19):2375–2414CrossRefPubMedGoogle Scholar
  7. 7.
    Palatini P (2009) Elevated heart rate: a “new” cardiovascular risk factor? Prog Cardiovasc Dis 52(1):1–5CrossRefPubMedGoogle Scholar
  8. 8.
    Hjalmarson A, Gilpin EA, Kjekshus J, Schieman G, Nicod P, Henning H, Ross J Jr (1990) Influence of heart rate on mortality after acute myocardial infarction. Am J Cardiol 65(9):547–553CrossRefPubMedGoogle Scholar
  9. 9.
    Diaz A, Bourassa MG, Guertin MC, Tardif JC (2005) Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. Eur Heart J 26(10):967–974CrossRefPubMedGoogle Scholar
  10. 10.
    Fox K, Ford I, Steg PG, Tendera M, Robertson M, Ferrari R (2008) Heart rate as a prognostic risk factor in patients with coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a subgroup analysis of a randomised controlled trial. Lancet 372(9641):817–821CrossRefPubMedGoogle Scholar
  11. 11.
    Fox K, Ford I, Steg PG, Tendera M, Ferrari R (2008) Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind placebo-controlled trial. Lancet 372(9641):807–816CrossRefPubMedGoogle Scholar
  12. 12.
    Pedrinelli R, Giampietro O, Carmassi F, Melillo E, Dell’Omo G, Catapano G, Matteucci E, Talarico L, Morale M, De Negri F et al (1994) Microalbuminuria and endothelial dysfunction in essential hypertension. Lancet 344(8914):14–18CrossRefPubMedGoogle Scholar
  13. 13.
    Stehouwer CD, Henry RM, Dekker JM, Nijpels G, Heine RJ, Bouter LM (2004) Microalbuminuria is associated with impaired brachial artery, flow-mediated vasodilation in elderly individuals without and with diabetes: further evidence for a link between microalbuminuria and endothelial dysfunction—the Hoorn Study. Kidney Int Suppl (92):S42–S44Google Scholar
  14. 14.
    Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A (1989) Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 32(4):219–226CrossRefPubMedGoogle Scholar
  15. 15.
    Böhm M, Reil JC, Danchin N, Thoenes M, Bramlage P, Volpe M (2008) Association of heart rate with microalbuminuria in cardiovascular risk patients: data from I-SEARCH. J Hypertens 26(1):18–25CrossRefPubMedGoogle Scholar
  16. 16.
    Böhm M, Thoenes M, Neuberger HR, Graber S, Reil JC, Bramlage P, Volpe M (2009) Atrial fibrillation and heart rate independently correlate to microalbuminuria in hypertensive patients. Eur Heart J 30(11):1364–1371CrossRefPubMedGoogle Scholar
  17. 17.
    Custodis F, Baumhakel M, Schlimmer N, List F, Gensch C, Böhm M, Laufs U (2008) Heart rate reduction by ivabradine reduces oxidative stress, improves endothelial function, and prevents atherosclerosis in apolipoprotein E-deficient mice. Circulation 117(18):2377–2387CrossRefPubMedGoogle Scholar
  18. 18.
    Drouin A, Gendron ME, Thorin E, Gillis MA, Mahlberg-Gaudin F, Tardif JC (2008) Chronic heart rate reduction by ivabradine prevents endothelial dysfunction in dyslipidaemic mice. Br J Pharmacol 154(4):749–757CrossRefPubMedGoogle Scholar
  19. 19.
    Baumhäkel M, Custodis F, Schlimmer N, Laufs U, Böhm M (2010) Heart rate reduktion with ivabradine improves erectile dysfunction in parallel to decrease in atherosclerotic plaque load in ApoE-knockout mice. Atherosclerosis (Mar 9 Epub ahead of print)Google Scholar
  20. 20.
    Beere PA, Glagov S, Zarins CK (1984) Retarding effect of lowered heart rate on coronary atherosclerosis. Science 226(4671):180–182CrossRefPubMedGoogle Scholar
  21. 21.
    Beere PA, Glagov S, Zarins CK (1992) Experimental atherosclerosis at the carotid bifurcation of the cynomolgus monkey localization, compensatory enlargement, and the sparing effect of lowered heart rate. Arterioscler Thromb 12(11):1245–1253PubMedGoogle Scholar
  22. 22.
    Kaplan JR, Manuck SB, Clarkson TB (1987) The influence of heart rate on coronary artery atherosclerosis. J Cardiovasc Pharmacol 10(Suppl 2):S100–S102 discussion S103PubMedGoogle Scholar
  23. 23.
    Manuck SB, Adams MR, McCaffery JM, Kaplan JR (1997) Behaviorally elicited heart rate reactivity and atherosclerosis in ovariectomized cynomolgus monkeys (Macaca fascicularis). Arterioscler Thromb Vasc Biol 17(9):1774–1779PubMedGoogle Scholar
  24. 24.
    Korshunov VA, Berk BC (2004) Strain-dependent vascular remodeling: the “Glagov phenomenon” is genetically determined. Circulation 110(2):220–226CrossRefPubMedGoogle Scholar
  25. 25.
    Perski A, Hamsten A, Lindvall K, Theorell T (1988) Heart rate correlates with severity of coronary atherosclerosis in young postinfarction patients. Am Heart J 116(5 Pt 1):1369–1373CrossRefPubMedGoogle Scholar
  26. 26.
    Perski A, Olsson G, Landou C, de Faire U, Theorell T, Hamsten A (1992) Minimum heart rate and coronary atherosclerosis: independent relations to global severity and rate of progression of angiographic lesions in men with myocardial infarction at a young age. Am Heart J 123(3):609–616CrossRefPubMedGoogle Scholar
  27. 27.
    Heidland UE, Strauer BE (2001) Left ventricular muscle mass and elevated heart rate are associated with coronary plaque disruption. Circulation 104(13):1477–1482CrossRefPubMedGoogle Scholar
  28. 28.
    Zhu H, Friedman MH (2003) Relationship between the dynamic geometry and wall thickness of a human coronary artery. Arterioscler Thromb Vasc Biol 23(12):2260–2265CrossRefPubMedGoogle Scholar
  29. 29.
    Yang C, Tang D, Kobayashi S, Zheng J, Woodard PK, Teng Z, Bach R, Ku DN (2008) Cyclic bending contributes to high stress in a human coronary atherosclerotic plaque and rupture risk: in vitro experimental modeling and ex vivo MRI-based computational modeling approach. Mol Cell Biomech 5(4):259–274PubMedGoogle Scholar
  30. 30.
    Katritsis DG, Pantos J, Efstathopoulos E (2007) Hemodynamic factors and atheromatic plaque rupture in the coronary arteries: from vulnerable plaque to vulnerable coronary segment. Coron Artery Dis 18(3):229–237CrossRefPubMedGoogle Scholar
  31. 31.
    Lee RT, Schoen FJ, Loree HM, Lark MW, Libby P (1996) Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture. Arterioscler Thromb Vasc Biol 16(8):1070–1073PubMedGoogle Scholar
  32. 32.
    Lee RT, Grodzinsky AJ, Frank EH, Kamm RD, Schoen FJ (1991) Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83(5):1764–1770PubMedGoogle Scholar
  33. 33.
    Zuanetti G, Hernándes-Bernal F, Rossi A, Comerio G, Paolucci G, Maggioni AP (1999) Relevance of heart rate as a prognostic factor in myocardial infarction: the GISSI experience. Eur Heart J 1(suppl H):H52–H57Google Scholar
  34. 34.
    Cucherat M (2007) Quantitative relationship between resting heart rate reduction and magnitude of clinical benefits in post-myocardial infarction: a meta-regression of randomized clinicat trials. Eur Heart J 28:3012–3019CrossRefPubMedGoogle Scholar
  35. 35.
    Kendall MJ, Lynch KP, Hjalmarson A, Kjekshus J (1995) Beta-blockers and sudden cardiac death. Ann Intern Med 123(5):358–367PubMedGoogle Scholar
  36. 36.
    Hjalmarson A (1997) Effects of beta blockade on sudden cardiac death during acute myocardial infarction and the postinfarction period. Am J Cardiol 80(9B):35J–39JCrossRefPubMedGoogle Scholar
  37. 37.
    Beta-blocker Heart Attack Trial Research Group (1982) A randomized trial of propranolol in patients with acute myocardial infarction mortality results. JAMA 247(12):1707–1714CrossRefGoogle Scholar
  38. 38.
    Danish Study Group on Verapamil in myocardial infarction (1990) Effect of verapamil on mortality and major events after acute myocardial infarction (the Danish Verapamil Infarction Trial II (DAVIT II). Am J Cardiol 66:770–785Google Scholar
  39. 39.
    Tardif JC, Ponikowski P, Kahan T (2009) for the ASSOCIATE study investigators. Efficacy of the I(f) current inhibitor ivabradine in patients with chronic stable angina receiving beta blocker therapy: a 4-month, randomized placebo-controlled trial. Eur Heart J 30:540–548CrossRefPubMedGoogle Scholar
  40. 40.
    Koester R, Kaehler J, Ebelt H, Soeffker G, Werdan K, Meinertz T. (2010) Ivabradine in combination with beta-blocker therapy for the treatment of stable angina pectoris in every day clinical practice. Clin Res Cardiol (Epub ahead of print)Google Scholar
  41. 41.
    Kawaguchi M, Hay I, Fetics B, Kass DA (2003) Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation 107:714–720CrossRefPubMedGoogle Scholar
  42. 42.
    Kjekshus J, Gullestad L (1999) Heart rate as therapeutic target in heart failure. Eur Heart J 1(Suppl. H):H64–H69Google Scholar
  43. 43.
    McAlister FA, Wiebe N, Ezekowitz JA, Leung AA, Armstrong PW (2009) Meta-analysis: beta-blocker dose, heart rate reduction, and death in patients with heart failure. Ann Intern Med 150:784–794PubMedGoogle Scholar
  44. 44.
    Reil J-C, Reil G-H, Böhm M (2009) Heart rate reduction by I(f)-channel inhibition and its potential role in heart failure with reduced and preserved ejection fraction. Trends Cardiovasc Med 19:152–157CrossRefPubMedGoogle Scholar
  45. 45.
    DiFrancesco D, Camm AJ (2004) Heart rate lowering by specific and selective I(f) current inhibition with ivabradine. A new therapeutic perspective in cardiovascular disease. Drugs 64:1757–1765CrossRefPubMedGoogle Scholar
  46. 46.
    Lechat P, Hulot JS, Escolano S et al (2001) Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II Trail. Circulation 103:1428–1433PubMedGoogle Scholar
  47. 47.
    Gullestad L, Wikstrand J, Deedwania P (2005) What resting heart rate should one aim for when treating patients with heart failure with a Beta-Blocker? J Am Coll Cardiol 45:252–259CrossRefPubMedGoogle Scholar
  48. 48.
    Metra M, Torp-Pedersen C, Swedberg K et al (2005) Influence of heart rate, blood pressure, and beta-blocker dose on outcome and the difference in outcome between carvedilol and metoprolol tartrate in patients with chronic heart failure: results from the COMET trial. Eur Heart J 26:2259–2268CrossRefPubMedGoogle Scholar
  49. 49.
    Swedberg K, Komajda M, Böhm M, Borer JS et al (2010) Ivabradine and outcomes in chronic heart failure (SHIFT): a randomized placebo-controlled study. Lancet [Epub ahead of print]Google Scholar
  50. 50.
    Böhm M, Swedberg K, Komajda M, Borer JS et al (2010) Heart rate as a risk factor in chronic heart failur (SHIFT): the association between heart rate and outcomes in a randomized placebo-controlled trial. Lancet [Epub ahead of print]Google Scholar
  51. 51.
    Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259CrossRefPubMedGoogle Scholar
  52. 52.
    Kindermann M, Reil J-C, Pieske B, van Veldhusen DJ, Böhm M (2008) Heart failure with normal left ventricular ejection fraction (HFNEF). What is evidence? Trends Cardiocasc Med 18:280–292CrossRefGoogle Scholar
  53. 53.
    Link A, Reil JC, Selejan S, Böhm M (2009) Effect of ivabradine in dobutamine induced sinus tachycardia in a case of acute heart failure. Clin Res Cardiol 98:513–551CrossRefPubMedGoogle Scholar
  54. 54.
    De Ferrari GM, Mazzuero A, Agnesina L, Bertoletti A et al (2008) Favourable effects of heart rate reduction with intravenous administration of ivabradine in patients with advanced heart failure. Eur J Heart Fail 10:550–555CrossRefPubMedGoogle Scholar
  55. 55.
    Deedwania P, Carbajal E, Dietz R, Mukherjee R et al (2006) Heart rate is powerful predictor in mortality in post-AMI patients with heart failure: results from the EPHESUS trial. Eur Heart J 27:590Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jan-Christian Reil
    • 1
  • Florian Custodis
    • 1
  • Karl Swedberg
    • 2
  • Michel Komajda
    • 3
  • Jeffrey S. Borer
    • 4
  • Ian Ford
    • 5
  • Luigi Tavazzi
    • 6
  • Ulrich Laufs
    • 1
  • Michael Böhm
    • 1
  1. 1.Klinik für Innere Medizin III, Kardiologie, Angiologie und, Internistische IntensivmedizinUniversitätsklinikum des SaarlandesHomburg/SaarGermany
  2. 2.Department of Emergency and Cardiovascular Medicine, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
  3. 3.Department of Cardiology, La Pitié-Salpétrière HospitalUniversity Pierre et Marie Curie Paris VIParisFrance
  4. 4.Division of Cardiovascular Medicine, The Howard Gilman Institute for Heart Valve DiseaseState University of New York Downstate Medical CenterBrooklynUSA
  5. 5.Robertson Centre for BiostatisticsUniversity of GlasgowGlasgowUK
  6. 6.GVM Care and ResearchMaria Cecilia HospitalCotignolaItaly

Personalised recommendations