Clinical Research in Cardiology

, Volume 100, Issue 1, pp 21–27 | Cite as

Early outgrowth EPCs generation is reduced in patients with Buerger’s disease

  • Yoshio Katsuki
  • Ken-ichiro Sasaki
  • Yasuyuki Toyama
  • Masanori Ohtsuka
  • Hiroshi Koiwaya
  • Takaharu Nakayoshi
  • Tsutomu Imaizumi
Original Paper



Buerger’s disease often shows poor collateral artery generation (i.e. neovascularization) in the ischemic limbs. However, the etiology has not yet been clarified. Circulating endothelial progenitor cells (EPCs) derived from bone marrow contribute to neovascularization in the multi-step process which includes the following capacities; mobilization, differentiation, adhesion, migration, invasion and secretion.

Materials and methods

We assessed EPCs capacities in vitro and ex vivo in age- and sex-matched controls (n = 12) and patients with Buerger’s disease (n = 12), derived from peripheral blood-derived mononuclear cells (PB-MNCs).


In the flow cytometry analysis, the numbers of circulating EPC (CD34+/KDR+ or CD133+/KDR+ PB-MNC) were similar between controls and patients with Buerger’s disease. Next, we cultured PB-MNC to obtain EPCs. The number of early outgrowth EPCs was significantly decreased in patients with Buerger’s disease (p < 0.005), indicating the reduced generation of early outgrowth EPCs in Buerger’s disease. However, adhesion, migration, invasion and secretion capacities were not impaired in patients with Buerger’s disease.


The early outgrowth EPCs generation is reduced in patients with Buerger’s disease.


Buerger’s disease Thromboangiitis obliterans Endothelial progenitor cell Cell function 



Endothelial progenitor cells


Peripheral blood-derived mononuclear cells


Thromboangiitis obliterans


Endothelial cells


Kinase domain receptor


Vascular endothelial growth factor


Fluorescence-activated cell sorting


Human umbilical vein endothelial cell


1,1′-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine-labeled acetylated low-density lipoprotein




Basic fibroblast growth factor


Platelet-derived growth factor BB


Insulin growth factor


Stromal cell-derived factor-1α


Enzyme-linked immunosorbent assay

IL-1, -6, -8

Interleukin-1, -6, -8


Tumor growth factor-1α


Vascular cell adhesion molecule-1


Monocyte chemotactic protein-1


High-sensitivity C-reactive protein


Messenger ribonucleic acid


  1. 1.
    Olin JW (2000) Thromboangiitis obliterans (Buerger’s disease). N Engl J Med 343:864–869PubMedCrossRefGoogle Scholar
  2. 2.
    von Winiwarter F (1879) Ueber eine eigenthumliche Form von Endarteriitis und Endophlebitis mit Gangran des Fusses. Arch Klin Chir 23:202–206Google Scholar
  3. 3.
    Buerger L (1908) Thrombo-angiitis obliterans: a study of the vascular lesions leading to presenile spontaneous gangrene. Am J Med Sci 136:567–580CrossRefGoogle Scholar
  4. 4.
    Folkmann J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31CrossRefGoogle Scholar
  5. 5.
    Risau W (2000) Mechanisms of angiogenesis. Nature 386:671–674Google Scholar
  6. 6.
    Cameliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395CrossRefGoogle Scholar
  7. 7.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMedCrossRefGoogle Scholar
  8. 8.
    Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367PubMedGoogle Scholar
  9. 9.
    Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228PubMedGoogle Scholar
  10. 10.
    Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353PubMedCrossRefGoogle Scholar
  11. 11.
    Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600PubMedCrossRefGoogle Scholar
  12. 12.
    Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H et al (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89:E1–E7PubMedCrossRefGoogle Scholar
  13. 13.
    Jung C, Fischer N, Fritzenwanger M, Thude H, Ferrari M, Fabris M et al (2009) Endothelial progenitor cells in adolescents: impact of overweight, age, smoking, sport and cytokines in younger age. Clin Res Cardiol 98:179–188PubMedCrossRefGoogle Scholar
  14. 14.
    Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, Walter DH et al (2004) Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109:1615–1622PubMedCrossRefGoogle Scholar
  15. 15.
    Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A et al (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007PubMedCrossRefGoogle Scholar
  16. 16.
    Schmidt-Lucke C, Rössig L, Fichtlscherer S, Vasa M, Britten M, Kämper U et al (2005) Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 111:2981–2987PubMedCrossRefGoogle Scholar
  17. 17.
    Shionoya S (1998) Diagnostic criteria of Buerger’s disease. Int J Cardiol 66:S243–S245PubMedCrossRefGoogle Scholar
  18. 18.
    Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M et al (2000) Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95:952–958PubMedGoogle Scholar
  19. 19.
    Hirschi KK, Ingram DA, Yoder MC (2008) Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 28:1584–1595PubMedCrossRefGoogle Scholar
  20. 20.
    Urbich C, Heeschen C, Aicher A, Sasaki K, Bruhl T, Farhadi MR et al (2005) Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nat Med 11:206–213PubMedCrossRefGoogle Scholar
  21. 21.
    Moore MA, Hattori K, Heissig B, Shieh JH, Dias S, Crystal RG et al (2001) Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann N Y Acad Sci 938:36–45PubMedCrossRefGoogle Scholar
  22. 22.
    Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M et al (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193:1005–1014PubMedCrossRefGoogle Scholar
  23. 23.
    Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rütten H, Fichtlscherer S, Martin H, Zeiher AM (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108:391–397PubMedGoogle Scholar
  24. 24.
    Nishioka K, Higashi Y, Umemura T, Jituki D, Goto C, Nakamura S, et al. (2008) Vascular function and endothelial progenitor cells in thromboangiitis obliterans (Buerger’s disease). Circulation 118:S_635Google Scholar
  25. 25.
    Grisar J, Aletaha D, Steiner CW, Kapral T, Steiner S, Seidinger D et al (2005) Depletion of endothelial progenitor cells in the peripheral blood of patients with rheumatoid arthritis. Circulation 111:204–211PubMedCrossRefGoogle Scholar
  26. 26.
    Herbrig K, Haensel S, Oelschlaegel U, Pistrosch F, Foerster S, Passauer J (2006) Endothelial dysfunction in patients with rheumatoid arthritis is associated with a reduced number and impaired function of endothelial progenitor cells. Ann Rheum Dis 65:157–163PubMedCrossRefGoogle Scholar
  27. 27.
    Moonen JR, de Leeuw K, van Seijen XJ, Kallenberg CG, van Luyn MJ, Bijl M et al (2007) Reduced number and impaired function of circulating progenitor cells in patients with systemic lupus erythematosus. Arthritis Res Ther 9:R84PubMedCrossRefGoogle Scholar
  28. 28.
    Ebner P, Picard F, Richter J, Darrelmann E, Schneider M, Strauer BE et al (2010) Accumulation of VEGFR-2+/CD133+ cells and decreased number and impaired functionality of CD34+/VEGFR-2+ cells in patients with SLE. Rheumatology (Oxford) 49:63–72CrossRefGoogle Scholar
  29. 29.
    Yamamoto K, Kondo T, Suzuki S, Izawa H, Kobayashi M, Emi N et al (2004) Molecular evaluation of endothelial progenitor cells in patients with ischemic limbs: therapeutic effect by stem cell transplantation. Arterioscler Thromb Vasc Biol 24:e192–e196PubMedCrossRefGoogle Scholar
  30. 30.
    Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442PubMedCrossRefGoogle Scholar
  31. 31.
    Fong GH, Klingensmith J, Wood CR, Rossant J, Breitman ML (1996) Regulation of flt-1 expression during mouse embryogenesis suggests a role in the establishment of vascular endothelium. Dev Dyn 207:1–10PubMedCrossRefGoogle Scholar
  32. 32.
    Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66PubMedCrossRefGoogle Scholar
  33. 33.
    Verma S, Kuliszewski MA, Li SH, Szmitko PE, Zucco L, Wang CH et al (2004) C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation 109:2058–2067PubMedCrossRefGoogle Scholar
  34. 34.
    Fan Y, Ye J, Shen F, Zhu Y, Yeghiazarians Y, Zhu W et al (2006) Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J Cereb Blood Flow Metab 28:90–98CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yoshio Katsuki
    • 1
  • Ken-ichiro Sasaki
    • 1
  • Yasuyuki Toyama
    • 1
  • Masanori Ohtsuka
    • 1
  • Hiroshi Koiwaya
    • 1
  • Takaharu Nakayoshi
    • 1
  • Tsutomu Imaizumi
    • 1
  1. 1.Division of Cardio-Vascular Medicine, Department of Internal MedicineKurume University School of MedicineKurumeJapan

Personalised recommendations