Clinical Research in Cardiology

, Volume 96, Issue 3, pp 176–185 | Cite as

Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging

  • Gerald F. Greil
  • Ivo Wolf
  • Axel Kuettner
  • Michael Fenchel
  • Stephan Miller
  • Petros Martirosian
  • Fritz Schick
  • Matthias Oppitz
  • Hans-Peter Meinzer
  • Ludger Sieverding
ORIGINAL PAPER

Sammary

Background

Precise knowledge of cardiac anatomy is mandatory for diagnosis and treatment of congenital heart disease. Modern imaging techniques allow high resolution three-dimensional (3D) imaging of the heart and great vessels. In this study stereolithography was evaluated for 3D reconstructions of multidetector computed tomography (MDCT) and magnetic resonance imaging (MRI) data.

Methods

A plastinated heart specimen was scanned with MDCT and after segmentation a stereolithographic (STL) model was produced with laser sinter technique. After scanning the STL model with MDCT these data were compared with those of the original specimen after rigid registration using the iterative closest points algorithm (ICP). The two surfaces of the original specimen and STL model were matched and the symmetric mean distance was calculated. Additionally, the heart and great vessels of patients (age range 41 days–21 years) with congenital heart anomalies were imaged with MDCT (n = 2) or free breathing steady, state free-precession MRI (n = 3). STL models were produced from these datasets and the cardiac segments were analyzed by two independent observers.

Results

All cardiac structures of the heart specimen were reconstructed as a STL model within sub-millimeter resolution (mean surface distance 0.27 ± 0.76 mm). Cardiac segments of the STL patient models were correctly analyzed by two independent observers compared to the original 3D datasets, echocardiography (n = 5), x-ray angiography (n = 5), and surgery (n = 4).

Conclusions

High resolution MDCT or MRI 3D datasets can be accurately reconstructed using laser sinter technique. Teaching, research and preoperative planning may be facilitated in the future using this technique.

Key words

Computer simulation congenital heart disease magnetic resonance imaging multidetector computed tomography stereolithography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Movie1.avi (13.1 mb)
Supplementary material 1 (avi format 13,7 MB)
Movie2.avi (14.8 mb)
Supplementary material 2 (avi format 15.5 MB)

References

  1. 1.
    Van Praagh R, Van Praagh S (1992) Morphologic anatomy. In: Fyler DC (ed) Nadas’ Pediatric Cardiology, 1st edn. Hanley & Belfus, Inc., Philadelphia, pp 17–26Google Scholar
  2. 2.
    Van Praagh R (1992) Segmental approach to diagnosis. In: Fyler DC (ed) Nadas’ Pediatric Cardiology, 1st edn. Hanley & Belfus, Inc., Philadelphia, pp 27–35Google Scholar
  3. 3.
    Tutsch H (1975) An odorless, wellpreserving injectable solution for cadavers used in classes. Anat Anz 138:126–128PubMedGoogle Scholar
  4. 4.
    Tiedemann K, von Hagens G (1982) The technique of heart plastination. Anat Rec 204:295–299PubMedCrossRefGoogle Scholar
  5. 5.
    Flohr TG, Stierstorfer K, Ulzheimer S, Bruder H, Primak AN, McCollough CH (2005) Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys 32:2536–2547PubMedCrossRefGoogle Scholar
  6. 6.
    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Computer Graphics 21:163–169CrossRefGoogle Scholar
  7. 7.
    Wolf I, Vetter M, Wegner I et al (2005) The medical imaging interaction toolkit. Med Image Anal 9:594– 604PubMedCrossRefGoogle Scholar
  8. 8.
    Besl JP, McKay ND (1992) A method for registration of 3D shapes. IEEE Trans PAMI 14:239–256Google Scholar
  9. 9.
    Wolf I, Boettger T, Rietdorf U et al (2006) A system for rapid prototyping of hearts with congenital malformations based on the medical interaction toolkit (MITK). SPIE Medical Imaging 2006: Visualization, Image-Guided Procedures, and Display 6141:175–183Google Scholar
  10. 10.
    Perez-Arjona E, Dujovny M, Park H et al (2003) Stereolithography: neurosurgical and medical implications. Neurol Res 25:227–236PubMedCrossRefGoogle Scholar
  11. 11.
    Sodian R, Fu P, Lueders C et al (2005) Tissue engineering of vascular conduits: fabrication of custom-made scaffolds using rapid prototyping techniques. Thorac Cardiovasc Surg 53:144–149PubMedCrossRefGoogle Scholar
  12. 12.
    Mottl-Link S, Boettger T, Krueger JJ et al (2005) Images in cardiovascular medicine. Cast of complex congenital heart malformation in a living patient. Circulation 112:e356–e357PubMedCrossRefGoogle Scholar
  13. 13.
    Shiraishi I, Kajiyama Y, Yamagishi M, Hamaoka K (2006) Images in cardiovascular medicine. Stereolithographic biomodeling of congenital heart disease by multislice computed tomography imaging. Circulation 113:e733–e734PubMedCrossRefGoogle Scholar
  14. 14.
    Sorensen TS, Korperich H, Greil GF et al (2004) Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation 110:163–169PubMedCrossRefGoogle Scholar
  15. 15.
    Greil GF, Kramer U, Dammann F et al (2005) Diagnosis of vascular rings and slings using an interleaved 3D double-slab FISP MR angiography technique. Pediatr Radiol 35:396–401PubMedCrossRefGoogle Scholar
  16. 16.
    Eichhorn J, Schoenberg S, Ulmer HE (2003) Cardiac-gated multislice computerised tomographic angiography in the preoperative evaluation of an infant with tetralogy of Fallot and pulmonary atresia. Cardiol Young 13:466–468PubMedGoogle Scholar
  17. 17.
    Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ (1999) Submillimeter three-dimensional coronary MR angiography with realtime navigator correction: comparison of navigator locations. Radiology 212:579–587PubMedGoogle Scholar
  18. 18.
    Fenchel M, Greil GF, Martirosian P et al (2006) Three-dimensional morphological magnetic resonance imaging in infants and children with congenital heart disease. Pediatr Radiol 36(12):1265–1272PubMedCrossRefGoogle Scholar
  19. 19.
    Greil GF, Kuettner A, Sieverding L et al (2004) Multimedia articles. Images in cardiovascular medicine. Cervical origin of the subclavian artery: imaging of a rare but clinically relevant anomaly. Circulation 109:e177–e178PubMedCrossRefGoogle Scholar
  20. 20.
    Brenner D, Elliston C, Hall E, Berdon W (2001) Estimated risks of radiation- induced fatal cancer from pediatric CT. AJR 176:289–296PubMedGoogle Scholar
  21. 21.
    Slack JD, Slack LA, Orr C (1982) Recurrent severe reaction to iodinated contrast media during cardiac catheterization. Heart Lung 11:348–352PubMedGoogle Scholar
  22. 22.
    Huber ME, Paetsch I, Schnackenburg B et al (2003) Performance of a new gadolinium-based intravascular contrast agent in free-breathing inversion- recovery 3D coronary MRA. Magn Reson Med 49:115–121PubMedCrossRefGoogle Scholar
  23. 23.
    Paetsch I, Huber ME, Bornstedt A et al (2004) Improved three-dimensional free-breathing coronary magnetic resonance angiography using gadocoletic acid (B-22956) for intravascular contrast enhancement. J Magn Reson Imaging 20:288–293PubMedCrossRefGoogle Scholar
  24. 24.
    Stuber M, Botnar RM, Fischer SE et al (2002) Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 48:425–429PubMedCrossRefGoogle Scholar
  25. 25.
    Kozerke S, Tsao J (2004) Reduced data acquisition methods in cardiac imaging. Top Magn Reson Imaging 15:161–168CrossRefGoogle Scholar
  26. 26.
    Nikolaou K, Flohr T, Stierstorfer K, Becker CR, Reiser MF (2005) Flat panel computed tomography of human ex vivo heart and bone specimens: initial experience. Eur Radiol 15:329–333PubMedCrossRefGoogle Scholar
  27. 27.
    Flohr TG, McCollough CH, Bruder H et al (2005) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff-Verlag 2007

Authors and Affiliations

  • Gerald F. Greil
    • 1
  • Ivo Wolf
    • 2
  • Axel Kuettner
    • 3
  • Michael Fenchel
    • 3
  • Stephan Miller
    • 3
  • Petros Martirosian
    • 4
  • Fritz Schick
    • 4
  • Matthias Oppitz
    • 5
  • Hans-Peter Meinzer
    • 2
  • Ludger Sieverding
    • 1
  1. 1.Department of Pediatric CardiologyChildren's Hospital University of TübingenTübingenGermany
  2. 2.Division of Medical and Biological InformaticsGerman Cancer Research Center University of HeidelbergHeidelbergGermany
  3. 3.Department of Diagnostic RadiologyUniversity of TübingenTübingenGermany
  4. 4.Department of Diagnostic RadiologySection of Experimental Radiology University of TübingenTübingenGermany
  5. 5.Department of EmbryologyTübingenGermany

Personalised recommendations