Zeitschrift für Kardiologie

, Volume 94, Issue 4, pp 255–264 | Cite as

Peak oxygen uptake

Myth and truth about an internationally accepted reference value
ORIGINAL PAPER

Summary

This article critically examines the execution of VO2-peak testing in cardiac patients and questions their appropriate interpretation. In the first part, the most common clinical implications of VO2peak measurements are discussed: assessment of (changes in) functional capacity, evaluation of the necessity of invasive diagnostic/therapeutic measures, reference for exercise prescriptions, determination of prognosis. In the second part, important methodological problems and constraints are addressed and illustrated by references to scientific studies. Finally, recommendations are given for meaningful VO2peak testing. It is evident that failure to strictly follow such recommendations might result in misleading ergometric findings and, thus, in over- or underestimation of endurance capacity and/ or training effects.

Key words

Exercise ergometry heart failure functional capacity endurance methodology 

Die maximale Sauerstoffaufnahme—Schein und Sein eines international anerkannten Referenzwertes

Zusammenfassung

Dieser Beitrag beschäftigt sich kritisch mit der Durchführung von Messungen der maximalen Sauerstoffaufnahme (VO2peak) bei Herzpatienten und hinterfragt deren angemessene Interpretation. Im ersten Abschnitt werden die häufigsten klinischen Anwendungen von VO2peak-Messungen diskutiert: Abschätzung der funktionellen Kapazität sowie ihrer Veränderungen, Beurteilung der Notwendigkeit invasiver diagnostischer bzw. therapeutischer Maßnahmen, Bezugspunkt für Trainingsvorgaben und Prognosestellung. Der zweite Abschnitt befasst sich mit wichtigen methodischen Problemen und Einschränkungen, die anhand von wissenschaftlichen Studien illustriert sind. Schließlich werden Empfehlungen für möglichst aussagekräftige VO2-peak-Messungen abgeleitet. Es wird deutlich, dass irreführende ergometrische Befunde möglich sind, wenn man sich nicht streng an solche Vorgaben hält. Dies kann zu Über- oder Unterschätzungen sowohl der Ausdauerleistungsfähigkeit als auch vermeintlicher Trainingseffekte führen.

Schlüsselwörter

Training Ergometrie Herzinsuffizienz Ausdauer Methodik 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamopoulos S, Coats AJ, Brunotte F, Arnolda L, Meyer T, Thompson CH, Dunn JF, Stratton J, Kemp GJ, Radda GK (1993) Physical training improves skeletal muscle metabolism in patients with chronic heart failure. J Am Coll Cardiol 21:1101–1106Google Scholar
  2. 2.
    Arbeitsgruppe Thorakale Organtransplantation der Deutschen Gesellschaft für Kardiologie (1996) Indikationen, Kontraindikationen und differentialtherapeutische Alternativen der Herztransplantation [Indications, contraindications and differential therapeutic alternatives in heart transplantation]. Z Kardiol 85:519–527Google Scholar
  3. 3.
    Atkinson G (2003) What is this thing called measurement error? In: Reilly TM, Marfell-Jones M (eds) Kinanthropometry VIII: Proceedings of the 8th International Conference of the International Society for the Advancement of Kinanthropometry (ISAK). Taylor & Francis, London, pp 3–14Google Scholar
  4. 4.
    Atkinson G, Nevill AM (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 26:217–238PubMedGoogle Scholar
  5. 5.
    Baba R, Tsuyuki K, Kimura Y, Ninomiya K, Aihara M, Ebine K, Tauchi N, Nishibata K, Nagashima M (1999) Oxygen uptake efficiency slope as a useful measure of cardiorespiratory functional reserve in adult cardiac patients. Eur J Appl Physiol 80:397–401Google Scholar
  6. 6.
    Babineau C, Léger L, Long A, Bosquet L (1999) Variability of maximum oxygen consumption measurement in various metabolic systems. J Strength Cond Res 13:318–324Google Scholar
  7. 7.
    Bagger M, Petersen PH, Pedersen PK (2003) Biological variation in variables associated with exercise training. Int J Sports Med 24:433–440Google Scholar
  8. 8.
    Behrens S, Andresen D, Bruggemann T, Ehlers C, Schroder R (1994) Reproduzierbarkeit der symptomlimitierten Sauerstoffaufnahme und der anaeroben Schwelle im Rahmen spiroergometrischer Untersuchungen bei Patienten mit Herzinsuffizienz [Reproducibility of symptom-limited oxygen consumption and anaerobic threshold within the scope of spiroergometric studies in patients with heart failure]. Z Kardiol 83:44–49Google Scholar
  9. 9.
    Belardinelli R, Georgiou D, Cianci G, Berman N, Ginzton L, Purcaro A (1995) Exercise training improves left ventricular diastolic filling in patients with dilated cardiomyopathy. Clinical and prognostic implications. Circulation 91:2775–2784Google Scholar
  10. 10.
    Belardinelli R, Georgiou D, Cianci G, Purcaro A (1999) Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome. Circulation 99:1173–1182Google Scholar
  11. 11.
    Belardinelli R, Georgiou D, Scocco V, Barstow TJ, Purcaro A (1995) Low intensity exercise training in patients with chronic heart failure. J Am Coll Cardiol 26:975–982Google Scholar
  12. 12.
    Belardinelli R, Scocco V, Mazzanti M, Purcaro A (1992) Effects of aerobic training in patients with moderate chronic heart failure. G Ital Cardiol 22:919–930Google Scholar
  13. 13.
    Bergh U, Sjodin B, Forsberg A, Svedenhag J (1991) The relationship between body mass and oxygen uptake during running in humans. Med Sci Sports Exerc 23:205–211Google Scholar
  14. 14.
    Bevegard S, Holmgren A, Jonsson B (1963) Circulatory studies in well trained athletes at rest and during heavy exercise, with special reference to stroke volume and the influence of body position. Acta physiol scand 57:26–50Google Scholar
  15. 15.
    Borg G, Noble B (1974) Perceived exertion. Exerc Sports Sci Rev 2:131–153Google Scholar
  16. 16.
    Bosquet L, Léger L, Legros P (2002) Methods to determine aerobic endurance. Sports Med 32:675–700Google Scholar
  17. 17.
    Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ (1983) Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol 55:1558–1564Google Scholar
  18. 18.
    Bunc V, Heller J, Leso J (1988) Kinetics of heart rate responses to exercise. J Sports Sci 6:39–48Google Scholar
  19. 19.
    Cardiology TFotESo (1997) Management of stable angina pectoris. Eur Heart J 18:394–413Google Scholar
  20. 20.
    Coats AJ, Adamopoulos S, Meyer TE, Conway J, Sleight P (1990) Effects of physical training in chronic heart failure. Lancet 335:63–66Google Scholar
  21. 21.
    Coats AJ, Adamopoulos S, Radaelli A, McCance A, Meyer TE, Bernardi L, Solda PL, Davey P, Ormerod O, Forfar C (1992) Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85:2119–2131Google Scholar
  22. 22.
    Cohen-Solal A, Gourgon R (1991) Assessment of exercise tolerance in chronic congestive heart failure. Am J Cardiol 67:36c–40cGoogle Scholar
  23. 23.
    Cumming GR, Borsyk LM (1972) Criteria for maximum oxygen uptake in men over 40 in a population survey. Med Sci Sports Exerc 4:18–20Google Scholar
  24. 24.
    Davies B, Dagget A, Jakeman P, Mulhall J (1984) Maximum oxygen uptake utilizing different treadmill protocols. Br J Sports Med 18:74–79Google Scholar
  25. 25.
    Dobeln WV, Astrand I, Bergstrom A (1967) An analysis of age and other factors related to maximal oxygen uptake. J Appl Physiol 22:934–938Google Scholar
  26. 26.
    Doherty M, Nobbs L, Noakes TD (2003) Low frequency of the “plateau phenomenon during maximal in elite Britilsh athletes. Eur J Appl Physiol 89:619–623Google Scholar
  27. 27.
    Dubach P, Myers J, Dziekan G, Goebbels U, Reinhart W, Vogt P, Ratti R, Muller P, Miettunen R, Buser P (1997) Effect of exercise training on myocardial remodeling in patients with reduced left ventricular function after myocardial infarction: application of magnetic resonance imaging. Circulation 95:2060–2067Google Scholar
  28. 28.
    Duncan GE, Howley ET, Johnson BN (1997) Applicability of VO2max criteria: discontinuous versus continuous protocols. Med Sci Sports Exerc 29:273–278PubMedGoogle Scholar
  29. 29.
    Faude O, Meyer T, Kindermann W (2001) Work rates at ventilatory threshold during ramp versus constant load exercise. In: Mester J, King G, Strüder H, Tsolakidis E, Osterburg A (eds) Book of Abstracts, 6th Annual Congress of the European College of Sport Science. Sport und Buch Strauss, Köln, p 267Google Scholar
  30. 30.
    Franciosa JA, Leddy CL, Wilen M, Schwartz DE (1984) Relation between hemodynamic and ventilatory responses in determining exercise capacity in severe congestive heart failure. Am J Cardiol 53:127–134Google Scholar
  31. 31.
    Franciosa JA, Park M, Levine TB (1981) Lack of correlation between exercise capacity and indexes of resting left ventricular performance in heart failure. Am J Cardiol 47:33–39CrossRefPubMedGoogle Scholar
  32. 32.
    Franciosa JA, Ziesche S, Wilen M (1979) Functional capacity of patients with chronic left ventricular failure. Relationship of bicycle exercise performance to clinical and hemodynamic characterization. Am J Med 67:460–466Google Scholar
  33. 33.
    Froelicher VF Jr, Brammell H, Davis G, Noguera I, Stewart A, Lancaster MC (1974) A comparison of the reproducibility and physiologic response to three maximal treadmill exercise protocols. Chest 65:512–517Google Scholar
  34. 34.
    Gardner RS, Ozalp F, Murday AJ, Robb SD, McDonagh TA (2003) N-terminal pro-brain natriuretic peptide. A new gold standard in predicting mortality in patients with advanced heart failure. Eur Heart J 24:1735–1743CrossRefPubMedGoogle Scholar
  35. 35.
    Gibbons L, Blair SN, Kohl HW, Cooper K (1989) The safety of maximal exercise testing. Circulation 80:846–852Google Scholar
  36. 36.
    Gitt AK, Wasserman K, Kilkowski C, Kleemann T, Kilkowski A, Bangert M, Schneider S, Schwarz A, Senges J (2002) Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death. Circulation 106:3079–3084Google Scholar
  37. 37.
    Guyatt GH, Thompson PJ, Berman LB, Sullivan MJ, Townsend M, Jones NL, Pugsley SO (1985) How should we measure function in patients with chronic heart and lung disease? J Chronic Dis 38:517–524Google Scholar
  38. 38.
    Haass M, Zugck C, Kubler W (2000) Der 6-Minuten-Gehtest: Eine kostengünstige Alternative zur Spiroergometrie bei Patienten mit chronischer Herzinsuffizienz? [The 6 minute walking test: a cost-effective alternative to spiro-ergometry in patients with chronic heart failure?]. Z Kardiol 89:72–80Google Scholar
  39. 39.
    Hambrecht R, Niebauer J, Fiehn E, Kalberer B, Offner B, Hauer K, Riede U, Schlierf G, Kubler W, Schuler G (1995) Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol 25:1239–1249Google Scholar
  40. 40.
    Hansen JE, Casaburi R, Cooper DM, Wasserman K (1988) Oxygen uptake as related to work rate increment during cycle ergometer exercise. Eur J Appl Physiol 57:140–145Google Scholar
  41. 41.
    Hansen JE, Sue DY, Oren A, Wasserman K (1987) Relation of oxygen uptake to work rate in normal men and men with circulatory disorders. Am J Cardiol 59:669–674Google Scholar
  42. 42.
    Hawley JA, Noakes TD (1992) Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol 65:79–83PubMedGoogle Scholar
  43. 43.
    Heil DP (1997) Body mass scaling of peak oxygen uptake in 20- to 79-yrold adults. Med Sci Sports Exerc 29:1602–1608PubMedGoogle Scholar
  44. 44.
    Hermansen L, Saltin B (1969) Oxygen uptake during maximal treadmill and bicycle exercise. J Appl Physiol 26:31–37PubMedGoogle Scholar
  45. 45.
    Hill AV, Lupton H (1923) Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q J Med 16:135–171Google Scholar
  46. 46.
    Hill DW, Stephens LP, Blumoff-Ross SA, Poole DC, Smith JC (2003) Effect of sampling strategy on measures of VO2peak obtained using commercial breath-by-breath systems. Eur J Appl Physiol 89:564–569Google Scholar
  47. 47.
    Howley ET, Bassett DR, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27:1292–1301PubMedGoogle Scholar
  48. 48.
    Hunt HA, Baker DW, Chin MH, Cinquegrani MP, Feldmanmd AM, Francis GS, Ganiats TG, Goldstein S, Gregoratos G, Jessup ML, Noble RJ, Packer M, Silver MA, Stevenson LW, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Jacobs AK, Hiratzka LF, Russell RO, Smith SC Jr (2001) ACC/AHA Guidelines for the Evaluation and Management of Chronic Heart Failure in the Adult: Executive Summary. Circulation 104:2996–3007PubMedGoogle Scholar
  49. 49.
    Issekutz B Jr, Birkhead NC, Rodahl K (1962) Use of respiratory quotients in assessment of aerobic work capacity. J Appl Physiol 17:47–50Google Scholar
  50. 50.
    Jette M, Heller R, Landry F, Blumchen G (1991) Randomized 4-week exercise program in patients with impaired left ventricular function. Circulation 84:1561–1567Google Scholar
  51. 51.
    Katch V, Weltman A, Sady S, Freedson P (1978) Validity of the relative percent concept for equating training intensity. Eur J Appl Physiol 39:219–227Google Scholar
  52. 52.
    Katch VL, Sady S, Freedson P (1982) Biological variability in maximum aerobic power. Med Sci Sports Exerc 14:21–25Google Scholar
  53. 53.
    Keteyian SJ, Levine AB, Brawner CA, Kataoka T, Rogers FJ, Schairer JR, Stein PD, Levine TB, Goldstein S (1996) Exercise training in patients with heart failure. A randomized, controlled trial. Ann Intern Med 124:1051–1057Google Scholar
  54. 54.
    Krüger S, Graf J, Kunz D, Stickel T, Hanrath P, Janssens U (2002) Brain natriuretic peptide levels predict functional capacity in patients with chronic heart failure. J Am Coll Cardiol 40:718–722Google Scholar
  55. 55.
    Larsen AI, Aarsland T, Kristiansen M, Haugland A, Dickstein K (2001) Assessing the effect of exercise training in men with heart failure; comparison of maximal, submaximal and endurance exercise protocols. Eur Heart J 22:684–692Google Scholar
  56. 56.
    Le Jemtel TH, Mancini D, Gumbardo D, Chadwick B (1985) Pitfalls and limitations of “maximal” oxygen uptake as an index of cardiovascular functional capacity in patients with chronic heart failure. Heart Failure May/June: 112–124Google Scholar
  57. 57.
    Lear SA, Brozic A, Myers JN, Ignaszewski A (1999) Exercise stress testing—an overview of current guidelines. Sports Med 27:285–312Google Scholar
  58. 58.
    Lehmann G, Kolling K (1996) Reproducibility of cardiopulmonary exercise parameters in patients with valvular heart disease. Chest 110:685–692Google Scholar
  59. 59.
    Londeree BR, Moeschberger ML (1984) Influence of age and other factors on maximal heart rate. J Cardiac Rehabil 4:44–49Google Scholar
  60. 60.
    Maiorana A, O’Driscoll G, Cheetham C, Collis J, Goodman C, Rankin S, Taylor R, Green D (2000) Combined aerobic and resistance exercise training improves functional capacity and strength in CHF. J Appl Physiol 88:1565–1570Google Scholar
  61. 61.
    Mancini D, LeJemtel T, Aaronson K (2000) Peak VO2: a simple yet enduring standard. Circulation 101:1080–1082Google Scholar
  62. 62.
    Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH Jr, Wilson JR (1991) Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 83:778–786Google Scholar
  63. 63.
    Marburger CT, Brubaker PH, Pollock WE, Morgan TM, Kitzman DW (1998) Reproducibility of cardiopulmonary exercise testing in elderly patients with congestive heart failure. Am J Cardiol 82:905–909Google Scholar
  64. 64.
    McConnell TR (1988) Practical considerations in the testing of VO2max in runners. Sports Med 5:57–68Google Scholar
  65. 65.
    McConnell TR, Clark BA, Conlin NC, Haas JH (1993) Gas exchange anaerobic threshold—implications for prescribing exercise in cardiac rehabilitation. J Cardiopulm Rehabil 13:31–36Google Scholar
  66. 66.
    McLellan TM, Skinner JS (1981) The use of the aerobic threshold as a basis for training. Can J Appl Sport Sci 6:197–201Google Scholar
  67. 67.
    Mejhert M, Linder-Klingsell E, Edner M, Kahan T, Persson H (2002) Ventilatory variables are strong prognostic markers in elderly patients with heart failure. Heart 88:239–243Google Scholar
  68. 68.
    Meyer K, Samek L, Schwaibold M, Westbrook S, Hajric R, Beneke R, Lehmann M, Roskamm H (1997) Interval training in patients with severe chronic heart failure: analysis and recommendations for exercise procedures. Med Sci Sports Exerc 29:306–312Google Scholar
  69. 69.
    Meyer K, Schwaibold M, Hajric R, Westbrook S, Ebfeld D, Leyk D, Roskamm H (1998) Delayed VO2 kinetics during ramp exercise: a criterion for cardiopulmonary exercise capacity in chronic heart failure. Med Sci Sports Exerc 30:643–648Google Scholar
  70. 70.
    Meyer T, Gabriel HHW, Kindermann W (1999) Is determination of exercise intensities as percentages of VO2max or HRmax adequate? Med Sci Sports Exerc 31:1342–1345CrossRefPubMedGoogle Scholar
  71. 71.
    Meyer T, Görge G, Schwaab B, Hildebrandt K, Walldorf J, Schäfer C, Kindermann I, Scharhag J, Kindermann W (2005) An alternative approach for exercise prescription and efficacy testing in patients with chronic heart failure—A randomized controlled training study. Am Heart J 149 (in press)Google Scholar
  72. 72.
    Meyer T, Kindermann M, Kindermann W (2004) Exercise programs for patients with chronic heart failure—Training methods and effects on endurance capacity. Sports Med 34:939–954Google Scholar
  73. 73.
    Meyer T, Schwaab B, Görge G, Scharhag J, Herrmann M, Kindermann W (2004) Can serum NT-proBNP detect changes of functional capacity in patients with chronic heart failure? Z Kardiol 93:540–545Google Scholar
  74. 74.
    Meyer T, Urhausen A, Kindermann W (1999) Kardiovaskuläre und metabolische Beanspruchung der dynamischen Streßechokardiographie bei Patienten mit koronarer Herzkrankheit und bei Gesunden [Cardiovascular and metabolic response to dynamic stress echocardiography by patients with coronary heart disease and healthy subjects]. Z Kardiol 88:473–480Google Scholar
  75. 75.
    Miles DS, Cox MH, Verde TJ (1994) Four commonly utilized metabolic systems fail to produce similar results during submaximal and maximal exercise. Sport Med Train Rehab 5:189–198Google Scholar
  76. 76.
    Mitchell HH, Sproule BJ, Chapman CB (1958) The physiological meaning of the maximal oxygen intake test. J Clin Invest 37:538–547Google Scholar
  77. 77.
    Mitchell JH, Blomqvist G (1971) Maximal oxygen uptake. N Engl J Med 284:1018–1022Google Scholar
  78. 78.
    Myers J (2005) Applications of Cardiopulmonary Exercise Testing in the Management of Cardiovascular and Pulmonary Disease. Int J Sports Med 26 (in press)Google Scholar
  79. 79.
    Myers J, Bellin D (2000) Ramp exercise protocols for clinical and cardiopulmonary exercise testing. Sports Med 30:23–29Google Scholar
  80. 80.
    Myers J, Buchanan N, Walsh D, Kraemer M, McAuley P, Hamilton Wessler M, Froelicher VF (1991) Comparison of the ramp versus standard exercise protocols. J Am Coll Cardiol 17:1334–1342Google Scholar
  81. 81.
    Myers J, Gullestad L (1998) The role of exercise testing and gas-exchange measurement in the prognostic assessment of patients with heart failure. Curr Opin Cardiol 13:145–155Google Scholar
  82. 82.
    Myers J, Gullestad L, Vagelos R, Do D, Bellin D, Ross H, Fowler MB (2000) Cardiopulmonary exercise testing and prognosis in severe heart failure: 14 mL/kg/min revisited. Am Heart J 139:78–84Google Scholar
  83. 83.
    Myers J, Walsh D, Sullivan M, Froelicher V (1990) Effect of sampling on variability and plateau in oxygen uptake. J Appl Physiol 68:404–410CrossRefPubMedGoogle Scholar
  84. 84.
    Nechwatal RM, Duck C, Gruber G (2002) Körperliches Training als Intervall-oder kontinuierliches Training bei chronischer Herzinsuffizienz zur Verbesserung der funktionellen Leistungskapazität, Hämodynamik und Lebensqualität—eine kontrollierte Studie [Exercise training by interval versus steady-state modus in chronic heart failure: improvement of functional capacity, hemodynamics and quality of life—a controlled study]. Z Kardiol 91:328–337Google Scholar
  85. 85.
    Noakes TD (1997) 1996 J. B. Wolffe Memorial Lecture. Challenging beliefs: ex Africa semper aliquid novi. Med Sci Sports Exerc 29:571–590Google Scholar
  86. 86.
    Noakes TD (1998) Maximal oxygen uptake: “classical” versus “contemporary” viewpoints: a rebuttal. Med Sci Sports Exerc 30:1381–1398Google Scholar
  87. 87.
    Opasich C, Pinna GD, Bobbio M, Sisti M, Demichelis B, Febo O, Forni G, Riccardi R, Riccardi PG, Capomolla S, Cobelli F, Tavazzi L (1998) Peak exercise oxygen consumption in chronic heart failure: toward efficient use in the individual patient. J Am Coll Cardiol 31:766–775Google Scholar
  88. 88.
    Pardaens K, Van Cleemput J, Vanhaecke J, Fagard RH (2000) Peak oxygen uptake better predicts outcome than submaximal respiratory data in heart transplant candidates. Circulation 101:1152–1157Google Scholar
  89. 89.
    Ponikowski P, Francis DP, Piepoli MF, Davies LC, Chua TP, Davos CH, Florea V, Banasiak W, Poole-Wilson PA, Coats AJ, Anker SD (2001) Circulation 103:967–972Google Scholar
  90. 90.
    Remme WJ, Swedberg K (2001) Guidelines for the diagnosis and treatment of chronic heart failure. Eur Heart J 22:1527–1560CrossRefPubMedGoogle Scholar
  91. 91.
    Rickli H, Kiowski W, Brehm M, Weilenmann D, Schalcher C, Bernheim A, Oechslin E, Brunner-La Rocca HP (2003) Combining low-intensity and maximal exercise test results improves prognostic prediction in chronic heart failure. J Am Coll Cardiol 42:116–122Google Scholar
  92. 92.
    Roberts JM, Sullivan M, Froelicher VF, Genter F, Myers J (1984) Predicting oxygen uptake from treadmill testing in normal subjects and coronary artery disease patients. Am Heart J 108:1454–1460Google Scholar
  93. 93.
    Roul G, Moulichon ME, Bareiss P, Gries P, Sacrez J, Germain P, Mossard JM, Sacrez A (1994) Exercise peak VO2 determination in chronic heart failure: is it still of value? Eur Heart J 15:495–502Google Scholar
  94. 94.
    Shephard RJ (1984) Tests of maximum oxygen intake—a critical review. Sports Med 1:99–124Google Scholar
  95. 95.
    Shephard RJ, Allen C, Benade AJ, Davies CT, di Prampero PE, Hedman R, Merriman JE, Myhre K, Simmons R (1968) The maximum oxygen intake. An international reference standard of cardiorespiratory fitness. Bull World Health Organ 38:757–764Google Scholar
  96. 96.
    Simon G, Staiger J, Wehinger A, Kindermann W, Keul J (1978) Echokardiographische Größen des linken Ventrikels, Herzvolumen und Sauerstoffaufnahme [Echocardiographic size of the left ventricle, heart volume and maximal oxygen uptake]. Med Klin 73:1457–1462Google Scholar
  97. 97.
    Stuart RJ, Ellestad MH (1980) National survey of exercise stress testing facilities. Chest 77:94–97Google Scholar
  98. 98.
    Sullivan MJ, Higginbotham MB, Cobb FR (1989) Exercise training in patients with chronic heart failure delays ventilatory anaerobic threshold and improves submaximal exercise performance. Circulation 79:324–329Google Scholar
  99. 99.
    Taylor HL, Buskirk E, Henschel A (1955) Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol 8:73–80PubMedGoogle Scholar
  100. 100.
    Trappe H-J, Löllgen H (2000) Leitlinien zur Ergometrie [Guidelines for the conduction of ergometries]. Z Kardiol 89:821–837Google Scholar
  101. 101.
    Tristani FE, Hughes CV, Archibald DG, Sheldahl LM, Cohn JN, Fletcher R (1987) Safety of graded symptom-limited exercise testing in patients with congestive heart failure. Circulation 76:VI54–58Google Scholar
  102. 102.
    Wasserman K, McIlroy MB (1964) Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol 14:844–852CrossRefPubMedGoogle Scholar
  103. 103.
    Wasserman K, Whipp BJ, Koyl SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35:236–243PubMedGoogle Scholar
  104. 104.
    Weber KT, Janicki JS (1985) Cardiopulmonary exercise testing for evaluation of chronic cardiac failure. Am J Cardiol 55:22A–31AGoogle Scholar
  105. 105.
    Webster MW, Sharpe DN (1989) Exercise testing in angina pectoris: the importance of protocol design in clinical trials. Am Heart J 117:505–508Google Scholar
  106. 106.
    Weltman A, Snead D, Seip R, Schurrer R, Weltman J, Rutt R, Rogol A (1990) Percentages of maximal heart rate, heart rate reserve, and VO2max for determining endurance training intensity in male runners. Int J Sports Med 11:218–222Google Scholar
  107. 107.
    Weltman A, Weltman J, Rutt R, Seip R, Levine S, Snead D, Kaiser D, Rogol A (1989) Percentages of maximal heart rate, heart rate reserve, and VO2peak for determining endurance training intensity in sedentary women. Int J Sports Med 10:212–216Google Scholar
  108. 108.
    Wielenga RP, Huisveld IA, Bol E, Dunselman PH, Erdman RA, Baselier MR, Mosterd WL (1999) Safety and effects of physical training in chronic heart failure. Results of the Chronic Heart Failure and Graded Exercise study (CHANGE). Eur Heart J 20:872–879Google Scholar
  109. 109.
    Wilson JR, Rayos G, Yeoh TK, Gothard P, Bak K (1995) Dissociation between exertional symptoms and circulatory function in patients with heart failure. Circulation 92:47–53Google Scholar
  110. 110.
    Zhang YY, Johnson MC, Chow N, Wasserman K (1991) Effect of exercise testing protocol on parameters of aerobic function. Med Sci Sports Exerc 23:625–630Google Scholar
  111. 111.
    Zugck C, Haunstetter A, Krüger C, Kell R, Schellberg D, Kübler W, Haass M (2002) Impact of beta-blocker treatment on the prognostic value of currently used risk predictors in congestive heart/failure. J Am Coll Cardiol 39:1615–1622Google Scholar

Copyright information

© Steinkopff Verlag 2005

Authors and Affiliations

  1. 1.Institut für Sport- und PräventivmedizinUniversität des Saarlandes Campus, Geb. 39.1SaarbrückenGermany

Personalised recommendations