Zeitschrift für Kardiologie

, Volume 93, Issue 12, pp 921–928 | Cite as

Sitosterolemia—a rare disease

Are elevated plant sterols an additional risk factor?
CRITICAL PERSPECTIVE

Summary

Elevated plasma plant sterol concentrations, xanthomatosis, and accelerated—often fatal—atherosclerosis at young age are the major findings in patients with homozygous sitosterolemia. A defect in the ABCG5 or ABCG8 co-transporter gene locus (STSL) causes an increased intestinal absorption and a decreased biliary elimination of all sterols, plant sterols as well as cholesterol, leading to a 50 to 200-fold increase in plasma plant sterol concentrations. A few recent publications indicate that even moderately elevated plasma plant sterol levels might be associated with an increased risk of atherosclerosis. This raises the question whether plant sterols themselves might be atherogenic or whether elevated plasma levels are a marker for a decreased ABCG5/G8 transporter activity which itself causes an increased risk for atherosclerosis. However, current data are too few to conclude that elevated plant sterol concentrations in plasma are an additional risk factor for coronary heart disease. But especially young patients suffering from xanthomatosis and/or atherosclerotic diseases with only mildly or moderately elevated plasma cholesterol should be screened for sitosterolemia by measurement of plasma plant sterol levels.

Key words

Plant sterols sitosterol campesterol atherosclerosis review 

Sitosterinämie—eine seltene Krankheit. Sind erhöhte pflanzliche Sterole ein zusätzlicher Risikofaktor?

Zusammenfassung

Erhöhte Plasmakonzentrationen pflanzlicher Sterole, Xanthome und eine frühzeitige—häufig letal verlaufende—Atherosklerose in jugendlichem Alter sind die wesentlichen Befunde von Patienten mit homozygoter Sitosterinämie. Verantwortlich hierfür sind Mutationen im Genlokus der ABCG5 oder ABCG8 Cotransporter (STSL) mit der Folge einer erhöhten Resorption und verminderten biliären Elimination aller Sterole, pflanzlicher Sterole wie Cholesterin. Dies führt zu einem 50–200fachen Anstieg der Plasmakonzentrationen pflanzlicher Sterole. Einige kürzlich publizierte Arbeiten deuten an, dass erhöhte Plasmakonzentrationen pflanzlicher Sterole möglicherweise mit einem erhöhten Risiko für Atherosklerose einhergehen könnten und werfen so die Frage auf, ob pflanzliche Sterole an sich atherogen sind oder ob erhöhte Plasmakonzentrationen pflanzlicher Sterole lediglich ein Marker für eine reduzierte ABCG5/G8-Transporteraktivität sind und letztere selbst den eigentlichen Risikofaktor darstellt. Trotz verschiedener Hinweise reichen die zur Zeit vorliegenden Daten nicht aus, um zu beweisen, dass erhöhte Konzentrationen pflanzlicher Sterole ein zusätzlicher Risikofaktor für die koronare Herzkrankheit sind. Allerdings sollten besonders junge Patienten mit Xanthomen und/oder atherosklerostischen Erkrankungen und nur gering bis mäßig erhöhten Plasmacholesterin auf das Vorliegen einer Sitosterinämie mittels Bestimmung der pflanzlichen Sterole im Plasma untersucht werden.

Schlüsselwörter

Pflanzliche Sterole Sitosterin Campesterin Arteriosklerose Übersichtsarbeit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Salen G, Shefer S, Nguyen LB, Ness GC, Tint GS, Shore V (1992) Sitosterolemia. J Lipid Res 33:945–955Google Scholar
  2. 2.
    Björkhem I, Boberg KM, Leitersdorf E (2001) Inborn errors in bile acid biosynthesis and storage of sterols other than cholesterol. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) editors. The metabolic and molecular bases of inherited disease. 8th ed. McGraw-Hill, New York, pp 2961–2988Google Scholar
  3. 3.
    Lütjohann D, von Bergmann K (1997) Phytosterolaemia: diagnosis, characterization and therapeutical approaches. Ann Med 29:181–184Google Scholar
  4. 4.
    Skrede B, Björkhem I, Bergesen O, Kayden HJ, Skrede S (1985) The presence of 5 alpha-sitostanol in the serum of a patient with phytosterolemia, and its biosynthesis from plant steroids in rats with bile fistula. Biochim. Biophys. Acta 836:368–375Google Scholar
  5. 5.
    Salen G, Kwiterovich PO Jr, Shefer S, Tint GS, Horak I, Shore V, Dayal B, Horak E (1985) Increased plasma cholestanol and 5 alpha-saturated plant sterol derivatives in subjects with sitosterolemia and xanthomatosis. J Lipid Res 26:203–209Google Scholar
  6. 6.
    Lütjohann D, Björkhem I, Ose L (1996) Phytosterolaemia in a Norwegian family: diagnosis and characterization of the first Scandinavian case. Scand. J Clin Lab Invest 56:229–240Google Scholar
  7. 7.
    Gregg RE, Connor WE, Lin DS, Brewer HB Jr (1986) Abnormal metabolism of shellfish sterols in a patient with sitosterolemia and xanthomatosis. J Clin Invest 77:1864–1872Google Scholar
  8. 8.
    Shulman RS, Bhattacharyya AK, Connor WE, Fredrickson DS (1976) Betasitosterolemia and xanthomatosis. N Engl J Med 294:482–483Google Scholar
  9. 9.
    Bhattacharyya AK, Connor WE (1974) Beta-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters. J Clin Invest 53:1033–1043Google Scholar
  10. 10.
    Miettinen TA (1980) Phytosterolaemia, xanthomatosis and premature atherosclerotic arterial disease: a case with high plant sterol absorption, impaired sterol elimination and low cholesterol synthesis. Eur J Clin Invest 10:27–35Google Scholar
  11. 11.
    Salen G, von Bergmann K, Lütjohann D, Kwiterovich P, Kane J, Patel SB, Musliner T, Stein P, Musser B (2004) Ezetimibe effectively reduces plasma plant sterols in patients with sitosterolemia. Circulation 109:966–971Google Scholar
  12. 12.
    Salen G, Horak I, Rothkopf M, Cohen JL, Speck J, Tint GS, Shore V, Dayal B, Chen T, Shefer S (1985) Lethal atherosclerosis associated with abnormal plasma and tissue sterol composition in sitosterolemia with xanthomatosis. J Lipid Res 26:1126–1133Google Scholar
  13. 13.
    Katayama S, Satoh T, Yagi T, Hirose N, Kurita Y, Anzai T, Asakura Y, Yoshikawa T, Mitamura H, Ogawa S (2003) A 19-year-old man with myocardial infarction and sitosterolemia. Intern Med 42:591–594Google Scholar
  14. 14.
    Kolovou G, Voudris V, Drogari E, Palatianos G, Cokkinos DV (1996) Coronary bypass grafts in a young girl with sitosterolemia. Eur Heart J 17:965–966Google Scholar
  15. 15.
    Mellies MJ, Ishikawa TT, Glueck CJ, Bove K, Morrison J (1976) Phytosterols in aortic tissue in adults and infants. J Lab Clin Med 88:914–921Google Scholar
  16. 16.
    Mymin D, Wang J, Frohlich J, Hegele RA (2003) Image in cardiovascular medicine. Aortic xanthomatosis with coronary ostial occlusion in a child homozygous for a nonsense mutation in ABCG8. Circulation 107:791Google Scholar
  17. 17.
    Weihrauch JL, Gardner JM (1978) Sterol content of foods of plant origin. J Am Diet Assoc 73:39–47Google Scholar
  18. 18.
    Miettinen TA, Tilvis RS, Kesäniemi YA (1990) Serum plant sterols and cholesterol precursors reflect cholesterol absorption and synthesis in volunteers of a randomly selected male population. Am J Epidemiol 131:20–31Google Scholar
  19. 19.
    Normen AL, Brants HA, Voorrips LE, Andersson HA, van den Brandt PA, Goldbohm RA (2001) Plant sterol intakes and colorectal cancer risk in the Netherlands Cohort Study on Diet and Cancer. Am J Clin Nutr 74:141–148Google Scholar
  20. 20.
    Morton GM, Lee SM, Buss DH, Lawrence P (2001) Intakes and major dietary sources of cholesterol and phytosterols in the British diet. J Hum Nutr Diet 8:429–440Google Scholar
  21. 21.
    Heinemann T, Axtmann G, von Bergmann K (1993) Comparison of intestinal absorption of cholesterol with different plant sterols in man. Eur J Clin Invest 23:827–831Google Scholar
  22. 22.
    Lütjohann D, Björkhem I, Beil UF, von Bergmann K (1995) Sterol absorption and sterol balance in phytosterolemia evaluated by deuteriumlabeled sterols: effect of sitostanol treatment. J Lipid Res 36:1763–1773Google Scholar
  23. 23.
    Czubayko F, Beumers B, Lammsfuss S, Lütjohann D, von Bergmann K (1991) A simplified micro-method for quantification of fecal excretion of neutral and acidic sterols for outpatient studies in humans. J Lipid Res 32:1861–1867Google Scholar
  24. 24.
    Borgström B (1969) Quantification of cholesterol absorption in man by fecal analysis after the feeding of a single isotope-labeled meal. J Lipid Res 10:331–337Google Scholar
  25. 25.
    Quintão E, Grundy SM, Ahrens EH Jr (1971) An evaluation of four methods for measuring cholesterol absorption by the intestine in man. J Lipid Res 12:221–232Google Scholar
  26. 26.
    Connor WE, Lin DS (1974) The intestinal absorption of dietary cholesterol by hypercholesterolemic (type II) and normocholesterolemic humans. J Clin Invest 53:1062-1070Google Scholar
  27. 27.
    Kesäniemi YA, Miettinen TA (1987) Cholesterol absorption efficiency regulates plasma cholesterol level in the Finnish population. Eur J Clin Invest 17:391–395Google Scholar
  28. 28.
    Lütjohann D, Meese CO, Crouse JR, von Bergmann K (1993) Evaluation of deuterated cholesterol and deuterated sitostanol for measurement of cholesterol absorption in humans. J Lipid Res 34:1039–1046Google Scholar
  29. 29.
    Salen G, Ahrens EH Jr, Grundy SM (1970) Metabolism of β-sitosterol in man. J Clin Invest 49:952–967Google Scholar
  30. 30.
    Grundy SM (1983) Absorption and metabolism of dietary cholesterol. Annu Rev Nutr 3:71–96Google Scholar
  31. 31.
    Grundy SM, Ahrens EH Jr (1969) Measurements of cholesterol turnover, synthesis, and absorption in man, carried out by isotope kinetic and sterol balance methods. J Lipid Res 10:91–107Google Scholar
  32. 32.
    Grundy SM, Ahrens EH Jr, Davignon J (1969) The interaction of cholesterol absorption and cholesterol synthesis in man. J Lipid Res 10:304–315Google Scholar
  33. 33.
    Boberg KM, Einarsson K, Björkhem I (1990) Apparent lack of conversion of sitosterol into C24-bile acids in humans. J Lipid Res 31:1083–1088Google Scholar
  34. 34.
    Sudhop T, Sahin Y, Lindenthal B, Hahn C, Lüers C, Berthold HK, von Bergmann K (2002) Comparison of the hepatic clearances of campesterol, sitosterol, and cholesterol in healthy subjects suggests that efflux transporters controlling intestinal sterol absorption also regulate biliary secretion. Gut 51:860–863Google Scholar
  35. 35.
    Salen G, Shore V, Tint GS, Forte T, Shefer S, Horak I, Horak E, Dayal B, Nguyen L, Batta AK, Lindgren FT, Kwiterovich PO Jr (1989) Increased sitosterol absorption, decreased removal, and expanded body pools compensate for reduced cholesterol synthesis in sitosterolemia with xanthomatosis. J Lipid Res 30:1319–1330Google Scholar
  36. 36.
    Salen G, Tint GS, Shefer S, Shore V, Nguyen L (1992) Increased sitosterol absorption is offset by rapid elimination to prevent accumulation in heterozygotes with sitosterolemia. Arterioscler Thromb 12:563–568Google Scholar
  37. 37.
    Bhattacharyya AK, Connor WE, Lin DS, McMurry MM, Shulman RS (1991) Sluggish sitosterol turnover and hepatic failure to excrete sitosterol into bile cause expansion of body pool of sitosterol in patients with sitosterolemia and xanthomatosis. Arterioscler Thromb 11:1287–1294Google Scholar
  38. 38.
    Patel SB, Salen G, Hidaka H, Kwiterovich PO, Stalenhoef AF, Miettinen TA, Grundy SM, Lee MH, Rubenstein JS, Polymeropoulos MH, Brownstein MJ (1998) Mapping a gene involved in regulating dietary cholesterol absorption. The sitosterolemia locus is found at chromosome 2p21. J Clin Invest 102:1041–1044Google Scholar
  39. 39.
    Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, Kwiterovich P, Shan B, Barnes R, Hobbs HH (2000) Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290:1771–1775Google Scholar
  40. 40.
    Lee MH, Lu K, Hazard S, Yu H, Shulenin S, Hidaka H, Kojima H, Allikmets R, Sakuma N, Pegoraro R, Srivastava AK, Salen G, Dean M, Patel SB (2001) Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet 27:79–83Google Scholar
  41. 41.
    Yu L, Hammer RE, Li-Hawkins J, von Bergmann K, Lütjohann D, Cohen JC, Hobbs HH (2002) Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci USA 99:16237–16242Google Scholar
  42. 42.
    Yu L, Li-Hawkins J, Hammer RE, Berge KE, Horton JD, Cohen JC, Hobbs HH (2002) Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest 110:671–680Google Scholar
  43. 43.
    Heimer S, Langmann T, Moehle C, Mauerer R, Dean M, Beil UF, von Bergmann K, Schmitz G (2002) Mutations in the human ATP-binding cassette transporters ABCG5 and ABCG8 in sitosterolemia. Hum Mutat 20:151Google Scholar
  44. 44.
    Sudhop T, Lütjohann D, Kodal A, Igel M, Tribble DL, Shah S, Perevozskaya I, von Bergmann K (2002) Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation 106:1943–1948Google Scholar
  45. 45.
    Ikeda I, Nakagiri H, Sugano M, Ohara S, Hamada T, Nonaka M, Imaizumi K (2001) Mechanisms of phytosterolemia in stroke-prone spontaneously hypertensive and WKY rats. Metabolism 50:1361–1368Google Scholar
  46. 46.
    Huang MZ, Naito Y, Watanabe S, Kobayashi T, Kanai H, Nagai H, Okuyama H (1996) Effect of rapeseed and dietary oils on the mean survival time of stroke-prone spontaneously hypertensive rats. Biol Pharm Bull 19:554–557Google Scholar
  47. 47.
    Huang MZ, Watanabe S, Kobayashi T, Nagatsu A, Sakakibara J, Okuyama H (1997) Unusual effects of some vegetable oils on the survival time of stroke-prone spontaneously hypertensive rats. Lipids 32:745–751Google Scholar
  48. 48.
    Ratnayake WM, L’Abbe MR, Mueller R, Hayward S, Plouffe L, Hollywood R, Trick K (2000) Vegetable oils high in phytosterols make erythrocytes less deformable and shorten the life span of stroke-prone spontaneously hypertensive rats. J Nutr 130:1166–1178Google Scholar
  49. 49.
    Ratnayake WM, Plouffe L, Hollywood R, L’Abbe MR, Hidiroglou N, Sarwar G, Mueller R (2000) Influence of sources of dietary oils on the life span of stroke-prone spontaneously hypertensive rats. Lipids 35:409–420Google Scholar
  50. 50.
    Yu H, Pandit B, Klett E, Lee MH, Lu K, Helou K, Ikeda I, Egashira N, Sato M, Klein R, Batta A, Salen G, Patel SB (2003) The rat STSL locus: characterization, chromosomal assignment, and genetic variations in sitosterolemic hypertensive rats. BMC Cardiovasc Disord 3:4Google Scholar
  51. 51.
    Sehayek E, Duncan EM, Lütjohann D, Von Bergmann K, Ono JG, Batta AK, Salen G, Breslow JL (2002) Loci on chromosomes 14 and 2, distinct from ABCG5/ABCG8, regulate plasma plant sterol levels in a C57BL/6J x CASA/Rk intercross. Proc Natl Acad Sci USA 99:16215–16219Google Scholar
  52. 52.
    Glueck CJ, Speirs J, Tracy T, Streicher P, Illig E, Vandegrift J (1991) Relationships of serum plant sterols (phytosterols) and cholesterol in 595 hypercholesterolemic subjects, and familial aggregation of phytosterols, cholesterol, and premature coronary heart disease in hyperphytosterolemic probands and their first-degree relatives. Metabolism 40:842–848Google Scholar
  53. 53.
    Rajaratnam RA, Gylling H, Miettinen TA (2000) Independent association of serum squalene and noncholesterol sterols with coronary artery disease in postmenopausal women. J Am Coll Cardiol 35:1185–1191Google Scholar
  54. 54.
    Sudhop T, Gottwald BM, von Bergmann K (2002) Serum plant sterols as a potential risk factor for coronary heart disease. Metabolism 51:1519–1521Google Scholar
  55. 55.
    Berge KE, von Bergmann K, Lütjohann D, Guerra R, Grundy SM, Hobbs HH, Cohen JC (2002) Heritability of plasma noncholesterol sterols and relationship to DNA sequence polymorphism in ABCG5 and ABCG8. J Lipid Res 43:486–494Google Scholar
  56. 56.
    Assmann G, Cullen P, Erbey JR, Ramey DR, Kannenberg F, Schulte H (2003) Elevation of Plasma sitosterol concentration is associated with an increased risk for coronary events in the PROCAM study. Circulation 108:IV-730 (abstract)Google Scholar
  57. 57.
    Pollak OJ (1953) Reduction of blood cholesterol in man. Circulation 7:702–706Google Scholar
  58. 58.
    Pollak OJ (1953) Successful prevention of experimental hypercholesterolemia and cholesterol atherosclerosis in the rabbit. Circulation 7:696–701Google Scholar
  59. 59.
    Pollak OJ (1985) Effect of plant sterols on serum lipids and atherosclerosis. Pharmacol Ther 31:177–208Google Scholar
  60. 60.
    Peterson DW (1951) Effect of soybean sterols in the diet on plasma and liver cholesterol in chicks. Proc Soc Biol Med 78:143–147Google Scholar
  61. 61.
    Peterson DW (1958) Plant sterols and tissue cholesterol levels. Am J Clin Nutr 6:644–649Google Scholar
  62. 62.
    Nguyen TT, Dale LC, von Bergmann K, Croghan IT (1999) Cholesterol-lowering effect of stanol ester in a US population of mildly hypercholesterolemic men and women: a randomized controlled trial. Mayo Clin Proc 74:1198–1206Google Scholar
  63. 63.
    Katan MB, Grundy SM, Jones P, Law M, Miettinen T, Paoletti R (2003) Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin Proc 78:965–978PubMedGoogle Scholar
  64. 64.
    Law M (2000) Plant sterol and stanol margarines and health. BMJ 320:861–864Google Scholar
  65. 65.
    Weststrate JA, Meijer GW (1998) Plant sterol-enriched margarines and reduction of plasma total- and LDL-cholesterol concentrations in normocholesterolaemic and mildly hypercholesterolaemic subjects. Eur J Clin Nutr 52:334–343Google Scholar
  66. 66.
    Hallikainen MA, Sarkkinen ES, Gylling H, Erkkila AT, Uusitupa MI (2000) Comparison of the effects of plant sterol ester and plant stanol ester-enriched margarines in lowering serum cholesterol concentrations in hypercholesterolaemic subjects on a low-fat diet. Eur J Clin Nutr 54:715–725CrossRefPubMedGoogle Scholar
  67. 67.
    USA Food and Drug Administration (2003) Summary of all GRAS notices. Center for Food Safety & Applied Nutrition. Office of Food Additive Safety. http://www.cfsan.fda.gov/~rdb/opa-gras.htmlGoogle Scholar
  68. 68.
    European Commission (2000) Opinion of the scientific committee on food on a request for the safety assessment of the use of phytosterol esters in yellow fat spreads. http://www.europa.eu.int/comm/food/fs/sc/scf/out56_en.pdfGoogle Scholar
  69. 69.
    National Cholesterol Education Program Expert Panel (2001) Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA 285:2486–2497PubMedGoogle Scholar
  70. 70.
    Miettinen TA, Puska P, Gylling H, Vanhanen H, Vartiainen E (1995) Reduction of serum cholesterol with sitostanol-ester margarine in a mildly hypercholesterolemic population. N Engl J Med 333:1308–1312CrossRefPubMedGoogle Scholar
  71. 71.
    Lindenthal B, Sudhop T, Schiedermaier P, Agnan M, Sauerbruch T, von Bergmann K (2002) Serum plant sterols and biliary cholesterol secretion in humans: studies with ursodeoxycholic acid. J Lipid Res 43:1072–1077Google Scholar
  72. 72.
    Klett EL, Patel S (2003) Genetic defenses against noncholesterol sterols. Curr Opin Lipidol 14:341–345Google Scholar
  73. 73.
    Miettinen TA, Gylling H, Strandberg T, Sarna S (1998) Baseline serum cholestanol as predictor of recurrent coronary events in subgroup of Scandinavian simvastatin survival study. Finnish 4S Investigators. BMJ 316:1127–1130Google Scholar
  74. 74.
    Kajinami K, Brousseau ME, Nartsupha C, Ordovas JM, Schaefer EJ (2004) ATP binding cassette transporter G5 and G8 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin. J Lipid Res 45:653–656Google Scholar

Copyright information

© Steinkopff Verlag 2004

Authors and Affiliations

  1. 1.Universitätsklinikum Bonn, Abteilung für Klinische Pharmakologie European Network for inherited Dyslipidaemias—Cerebrotendinous Xanthomatosis & PhytosterolemiaBonnGermany

Personalised recommendations