Advertisement

Zeitschrift für Kardiologie

, Volume 93, Issue 12, pp 944–953 | Cite as

Value of the proximal flow convergence method for quantification of the regurgitant volume in mitral regurgitation

Influence of the mechanism of regurgitation, the imaging of the flow convergence region, and different calculation modalities
  • G. Grossmann
  • N. Marx
  • J. Spiess
  • M. Kochs
ORIGINAL PAPER

Summary

The purpose of this study was to evaluate whether the underlying mechanism of mitral regurgitation influences the reliability of the proximal flow con- vergence method to assess the regurgitant volume. Furthermore, the mode of imaging the flow convergence region and different correction algorithms for calculation of the regurgitant volume were compared.

Methods

Regurgitant volume was assessed in 45 patients (age 61±13 years) with organic (n=19) and functional (n=26) mitral regurgitation by the proximal flow convergence method for aliasing velocities between 14 and 64 cm/s using two-dimensional color Doppler imaging. Different correction and calculation algorithms were compared. In addition, regurgitant volume was determined using color Doppler M-mode for an aliasing velocity of 28 cm/s. The quantitative Doppler method was used as reference.

Results

In organic mitral regurgitation correlation coefficients (mean differences) between the proximal flow convergence method and the reference method were 0.25–0.43/ 0.58–0.67 (46–111 ml/15–17 ml) before/after geometric correction of the regurgitant volume for the aliasing velocities investigated. The correlation coefficient (mean difference) using color Doppler M-mode imaging was 0.68 (85 ml). The corresponding values in functional mitral regurgitation were 0.74–0.88/0.74–0.88 (–5–8 ml/–7–5 ml) for two-dimensional color Doppler and 0.88 (–1 ml) for M-mode imaging.

Conclusions

The regurgitant volume was overestimated by the proximal flow convergence method in organic mitral regurgitation irrespective of the application of different correction algorithms or the use of color Doppler M-mode. A sufficiently reliable determination of the regurgitant volume by the proximal flow convergence method was possible in functional mitral regurgitation. In that case a simplified calculation of the regurgitant volume based on the proximal flow convergence method was feasible.

Key words

Mitral regurgitation regurgitant volume proximal flow convergence method 

Stellenwert der proximalen Flusskonvergenzmethode zur Bestimmung des Regurgitationsvolumens bei der Mitralklappeninsuffizienz—Einfluss des Insuffizienzmechanismus, der Flusskonvergenzdarstellung und verschiedener Korrekturalgorithmen

Zusammenfassung

In der vorliegenden Untersuchung sollte der Stellenwert der proximalen Flusskonvergenzmethode zur Bestimmung des Regurgitationsvolumens der Mitralklappeninsuffizienz in Abhängigkeit von der Ursache der Insuffizienz, der Flusskonvergenzdarstellung und der Anwendung verschiedener Korrekturalgorithmen untersucht werden.

Methoden

Das Regurgitationsvolumen wurde bei 45 Patienten (Alter 61±13 Jahre) mit organischer (n=19) oder funktioneller (n=26) Mitralklappeninsuffizienz durch Messung der proximalen Flusskonvergenzradien bei Aliasinggeschwindigkeiten zwischen 14 und 64 cm/s im 2D-Farbdoppler bestimmt. Dabei wurden verschiedene Berechnungsalgorithmen wie eine geometrische Korrektur bei wandadhärenter Flusskonvergenzzone und ein vereinfachter Algorithmus, der als einzigen Messparameter den Flusskonvergenzradius benötigt, angewandt. Der Flusskonvergenzradius im M-Mode-Farbdoppler wurde bei einer Aliasinggeschwindigkeit von 28 cm/s dargestellt. Als Referenzmethode diente die quantitative Dopplerechokardiographie.

Ergebnisse

Bei organischer Mitralklappeninsuffizienz ergaben sich Korrelationskoeffizienten/ mittlere Differenzen zwischen der Flusskonvergenzmethode und der Referenzmethode von 0,25–0,43/46–111 ml vor und 0,58–0,67/15–17 ml nach geometrischer Korrektur für die untersuchten Aliasinggeschwindigkeiten. Im M-Mode-Farbdoppler fanden sich Werte von 0,68/85 ml. Die entsprechenden Werte bei funktioneller Insuffizienz lagen bei 0,74–0,88/–5–8 ml vor und 0,74–0,88/–7–5 ml nach geometrischer Korrektur im 2D-Farbdoppler und bei 0,88/–1 ml im M-Mode-Farbdoppler. Der vereinfachte Algorithmus ergab Regurgitationsvolumina, die den unkorrigierten Werten entsprachen.

Schlussfolgerung

Das Regurgitationsvolumen wurde bei Patienten mit organischer Mitralklappeninsuffizienz durch die Methode der proximalen Flusskonvergenz unabhängig von einer Korrektur und der Darstellung überschätzt, was den Stellenwert der Methode bei diesen Patienten erheblich einschränkte. Eine ausreichend zuverlässige Bestimmung des Regurgitationsvolumens war dagegen bei funktioneller Mitralklappeninsuffizienz möglich. Dabei konnte ein einfacher Berechnungsalgorithmus für das Regurgitationsvolumen verwendet werden.

Schlüsselwörter

Mitralinsuffizienz Regurgitationsvolumen Flusskonvergenzmethode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bargiggia GS, Tronconi L, Sahn DJ, Recusani F, Raisaro A, De Servi S, Valdes-Cruz LM, Montemartini C (1991) A new method for the quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice. Circulation 84:1481–1489Google Scholar
  2. 2.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet: 307–310Google Scholar
  3. 3.
    Blumlein S, Bouchard A, Schiller NB, Dae M, Byrd BF III, Ports T, Botvinick (1986) Quantification of mitral regurgitation by Doppler echocardiography. Circulation 74:306–314Google Scholar
  4. 4.
    Bolger AF, Eigler NL, Maurer G (1988) Quantifying valvular regurgitation. Limitations and inherent assumptions of Doppler techniques. Circulation 78:1316–1318Google Scholar
  5. 5.
    Bonow RO, Carabello B, De Leon AC, Edmunds LH, Fedderly BJ, Freed MD, Gaasch WH, McKay CR, Nishimura RA, O’Gara PT, O’Rourke RA, Rahimtoola SH (1998) ACC/AHA guidelines for the management of patients with valvular heart disease. J Am Coll Cardiol 32:1486–1588CrossRefPubMedGoogle Scholar
  6. 6.
    Chen C, Koschyk D, Brockhoff, Heik S, Hamm C, Bleifeld W, Kupper W (1993) Noninvasive estimation of flow rate and volume in patients with mitral regurgitation by Doppler color mapping of accelerating flow field. J Am Coll Cardiol 21:374–383Google Scholar
  7. 7.
    Coisne D, Erwan D, Christiaens L, Blouin P, Allal J, Barraine R (2002) Quantitative assessment of regurgitant flow with total digital three-dimensional reconstruction of color Doppler flow in the convergent region: in vitro validation. J Am Soc Echocardiogr 15:233–240Google Scholar
  8. 8.
    Enriquez-Sarano M, Bailey KR, Seward JB, Tajik AJ, Krohn MJ, Mays JM (1993) Quantitative Doppler assessment of valvular regurgitation. Circulation 87:841–848Google Scholar
  9. 9.
    Enriquez-Sarano M, Miller FA Jr, Hayes SN, Bailey KR, Tajik AJ, Seward JB (1995) Effective mitral regurgitant orifice area: clinical use and pitfalls of the proximal isovelocity surface area method. J Am Coll Cardiol 25:703–709Google Scholar
  10. 10.
    Enriquez-Sarano M, Sinak LJ, Tajik AJ, Bailey KR, Seward JB (1995) Changes in effective regurgitant orifice through-out systole in patients with mitral valve prolapse. A clinical study using the proximal isovelocity surface area method. Circulation 92:2951–2958Google Scholar
  11. 11.
    Giesler M, Bajtay D, Levine RA, Stein M, Grossmann G, Kochs M, Höher M, Hombach V (1999) Aortic regurgitant regurgitant flow by color Doppler measurement of the local velocity 7 mm above the leak orifice—Part 2: comparison with cardiac catheterization. Z Kardiol 88:896–905Google Scholar
  12. 12.
    Giesler M, Grossmann G, Pfob A, Bajtay D, Göller V, Hombach V (1996) Color Doppler echocardiography of the flow convergence region in vitro: Influence of orifice shape on the proximal velocity profile. Z Kardiol 85:45–52Google Scholar
  13. 13.
    Giesler M, Grossmann G, Schmidt A, Kochs M, Langhans J, Stauch M, Hombach V (1993) Color Doppler echocardiographic determination of mitral regurgitant flow from the proximal velocity profile of the flow convergence region. Am J Cardiol 71:217–224Google Scholar
  14. 14.
    Grigioni F, Enriquez-Sarano M, Zehr KJ, Bailey KR, Tajik AJ (2001) Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 103:1759–1764Google Scholar
  15. 15.
    Iliceto S, D’Ambrosio G, Amico A, Tota F, Piccinni G, Marangelli V, Rizzon P (1990) Errors in measurements of stroke volume for invasive and echo-Doppler evaluations of valvular regurgitant fractions. Clinical evaluation and computer simulation. Eur Heart J 11:355–360Google Scholar
  16. 16.
    Pu M, Proir DL, Fan X, Asher CR, Vasquez C, Griffin BP, Thomas JD (2001) Calculation of mitral regurgitant orifice area with use of a simplified proximal convergence method: initial clinical application. J Am Soc Echocardiogr 14:180–185Google Scholar
  17. 17.
    Pu M, Vandervoort PM, Griffin BP, Leung DY, Stewart WJ, Cosgrove DM III, Thomas JD (1995) Quantification of mitral regurgitation by the proximal convergence method using transesophageal echocardiography. Circulation 92:2169–2177Google Scholar
  18. 18.
    Reith S, Körtke H, Volk O, Klues HG (2001) Aktuelle Diagnostik und Therapie von Herzklappenerkrankungen. Z Kardiol 90(Suppl 6):13–21Google Scholar
  19. 19.
    Rivera JM, Vandervoort PM, Thoreau DH, Levine RA, Weyman AE, Thomas JD (1992) Quantification of mitral regurgitation with the proximal flow convergence method: a clinical study. Am Heart J 124:1289–1296Google Scholar
  20. 20.
    Rodriguez LL, Anconina J, Flachskampf FA, Weyman AE, Levine RA, Thomas JD (1992) Influence of flow rate, orifice size and aliasing velocity on flow calculation using the flow convergence method. Circ Res 70:923–930Google Scholar
  21. 21.
    Rokey R, Sterling LL, Zoghbi WA, Sartori MP, Limacher MC, Kuo LC, Quinones MA (1986) Determination of regurgitant regurgitant fraction in isolated mitral or aortic regurgitation by pulsed Doppler two-dimensional echocardiography. J Am Coll Cardiol 7:1273–1278Google Scholar
  22. 22.
    Schwammenthal E, Chen C, Benning F, Block M, Breithardt G, Levine RA (1994) Dynamics of mitral regurgitant flow and orifice area. Physiologic application of the proximal flow convergence method: clinical data and experimental testing. Circulation 90:307–322Google Scholar
  23. 23.
    Schwammenthal E, Chen C, Giesler M, Sagie A, Guerrero JL, Vazquez De Prada JA, Hombach V, Weyman AE, Levine RA (1996) New method for accurate calculation of regurgitant flow rate based on analysis of Doppler color flow maps of the proximal flow field. Validation in a canine model of mitral regurgitation with initial application in patients. J Am Coll Cardiol 27:161–172Google Scholar
  24. 24.
    Shah PM (1989) Quantitative assessment of mitral regurgitation. J Am Coll Cardiol 13:591–593Google Scholar
  25. 25.
    Shiota T, Teien D, Deng Y-B, Ge S, Shandas R, Holcomb S, Sahn DJ (1994) Estimation of regurgitant flow volume based on centerline velocity/distance profiles using digital color M-Q Doppler: application to orifices of different shapes. J Am Coll Cardiol 24:440–445Google Scholar
  26. 26.
    Utsunomiya T, Ogawa T, Doshi R, Patel D, Quan M, Henry WL (1991) Doppler color flow “proximal isovelocity surface area” method for estimating volume flow rate: effects of orifice shape and machine factors. J Am Coll Cardiol 17:1103–1111Google Scholar
  27. 27.
    Vandervoort PM, Thoreau DH, Rivera JM, Levine RA, Weyman AE, Thomas JD (1993) Automated flow rate calculations based on digital analysis of flow convergence proximal to regurgitant orifices. J Am Coll Cardiol 22:535–541Google Scholar
  28. 28.
    Zerkowski HR, Preiß M (2001) Mehrfachklappenerkrankungen—differenzialtherapeutische Überlegungen. Z Kardiol 90(Suppl 6):65–69Google Scholar
  29. 29.
    Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, Nihoyannopoulos P, Otto CM, Quinones MA, Rakowski H, Stewart WJ, Waggoner A, Weissman NJ (2003) A report from the American society of echocardiography’s nomenclature and standards committee and the task force on valvular regurgitations: Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802CrossRefPubMedGoogle Scholar

Copyright information

© Steinkopff Verlag 2004

Authors and Affiliations

  1. 1.Abteilung für KardiologieMedizinische Klinik der Universität UlmUlmGermany

Personalised recommendations