Zeitschrift für Kardiologie

, Volume 93, Issue 11, pp 864–877 | Cite as

Molekularbiologie der Herzvorhöfe

Neue Erkenntnisse zur Pathophysiologie des Vorhofflimmerns sowie klinische Implikationen
ÜBERSICHT

Zusammenfassung

Vorhofflimmern ist die häufigste Arrhythmie in der klinischen Praxis und einer der bedeutensten Risikofaktoren für zerebrale Insulte. Neue Untersuchungen konnten zeigen, dass neben den primär elektrophysiologischen Veränderungen im Vorhofgewebe, Vorhofflimmern auch erheblichen Einfluss auf verschiedene molekulare Signaltranduktionswege besitzt, wodurch vor allem strukturelle Veränderungen im atrialen Myokard induziert werden. Diese Übersichtarbeit fasst diese molekularen atrialen Veränderungen bei Vorhofflimmern zusammen und zeigt hierdurch auch neue Ansätze zur antiarrhythmischen Therapie auf.

Schlüsselwörter

Genexpression Fibrose Molekularbiologie Pathophysiologie Vorhofflimmern 

New pathophysiologic insights into the molecular biology of atrial myocardium during atrial fibrillation

Summary

Atrial fibrillation (AF) is the most common clinical arrhythmia and one of the most important factors for embolic stroke. In recent years, a tremendous amount has been learned about the pathophysiology and molecular biology of AF. Thus, pharmacologic interference with specific signal transduction pathways appears promising as a novel antiarrhythmic approach to maintain sinus rhythm and to prevent atrial clot formation. This review highlights the underlying molecular biology of atrial fibrillation, which may also be relevant for AF therapy.

Key words

Atrial fibrillation gene expression molecular biology pathophysiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aime-Sempe C, Folliguet T, Rucker-Martin C, Krajewska M, Krajewska S, Heimburger M, Aubier M, Mercadier JJ, Reed JC (1999) Myocardial cell death in fibrillating and dilated human right atria. J Am Coll Cardiol 34:1577–1586CrossRefPubMedGoogle Scholar
  2. 2.
    Allessie M, Ausma J, Schotten U (2002) Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 54:230–246CrossRefPubMedGoogle Scholar
  3. 3.
    Almeida EA, Huovila AP, Sutherland AE, Stephens LE, Calarco PG, Shaw LM, Mercurio AM, Sonnenberg A, Primakoff P, Myles DG (1995) Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor. Cell 81:1095–1104PubMedGoogle Scholar
  4. 4.
    Anversa P, Nadal-Ginard B (2002) Myocyte renewal and ventricular remodeling. Nature 415:240–243CrossRefPubMedGoogle Scholar
  5. 5.
    Arndt M, Lendeckel U, Röcken C, Nepple K, Zahn C, Huth C, Ansorge S, Klein HU, Goette A (2002) Altered expression of ADAMs (a disintegrin and metalloproteinase) in fibrillating human atria. Circulation 105:720–725CrossRefPubMedGoogle Scholar
  6. 6.
    Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M (1997) Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 96:3157–3163PubMedGoogle Scholar
  7. 7.
    Bibiker FA, De Windt LJ, vanEickels M, Thijssen V, Bronsaer RJP, Grohe C, van Bilsen M, Doevendans PA (2004) 17β-estradiol antagonizes cardiomyocyte hypertrophy by autocrine/paracrine stimulation of a guanylyl cyclase A receptor-cyclic guanosine monophosphate-dependent protein kinase pathway. Circulation 109:269–276CrossRefPubMedGoogle Scholar
  8. 8.
    Black R and White J (1998) ADAMs: focus on the protease domain. Curr Opin Cell Biol 10:654–659CrossRefPubMedGoogle Scholar
  9. 9.
    Blobel CP (1997) Metalloprotease-disintegrins: Links to cell adhesion and cleavage of TNFα and notch. Cell 90:589–592CrossRefPubMedGoogle Scholar
  10. 10.
    Boixel C, Fontaine V, Rücker-Martin C, Milliez P, Louedec L, Michel J-B, Jacob M-P, Hatem SN (2003) Fibrosis of the left atria during progression of heart failure is associated with increased matrix metalloproteinases in the rat. J Am Coll Cardiol 42:336–344CrossRefPubMedGoogle Scholar
  11. 11.
    Bosch, RF, Grammer JB, Kühlkamp V, Seipel L (2000) Elektrisches Remodeling bei Vorhofflimmern: zelluläre und molekulare Mechanismen. Z Kardiol 89:795–802CrossRefPubMedGoogle Scholar
  12. 12.
    Bosch RF, Scherer CR, Rub N, Wohrl S, Steinmeyer K, Haase H, Busch AE, Seipel L, Kühlkamp V (2003) Molecular mechanisms of early electrical remodeling: transcriptional downregulation of ion channel subunits reduces I(Ca,L) and I(to) in rapid atrial pacing in rabbits. J Am Coll Cardiol 41:858–869CrossRefPubMedGoogle Scholar
  13. 13.
    Brundel BJJM, Van Gelder IC, Henning RH, Tuinenburg AE, Deelman LE, Tieleman RG, Grandjean JG, van Gilst WH, Crijns HJ (1999) Gene expression of proteins infuencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovasc Res 42:443–454CrossRefPubMedGoogle Scholar
  14. 14.
    Brundel BJJM, Van Gelder IC, Tuinenburg AE, Wietses M, Van Veldhuisen DJ, Van Gilst WH, Crijns HJ, Henning RH (2001) Endothelin system in human persistent and paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol 12:737–742CrossRefPubMedGoogle Scholar
  15. 15.
    Burke AP, Tracy RP, Kolodgie F, Malcom GT, Zieske A, Kutys R, Pestaner J, Smialek J, Virmani R (2002) Elevated C-reactive protein values and atherosclerosis in sudden coronary death: association with different pathologies. Circulation 105:2019–2023CrossRefPubMedGoogle Scholar
  16. 16.
    Cai H, Li Z, Goette A, Mera F, Honeycutt C, Feterik K, Wilcox JN, Dudley SC, Harrison DG, Langberg JJ (2002) Downregulation of nitric oxide synthase expression and nitric oxide production in atrial fibrillation: potential mechanisms for atrial thrombosis and stroke. Circulation 106:2854–2858CrossRefPubMedGoogle Scholar
  17. 17.
    Carnes CA, Chung MK, Nakayama T, Nakayama H, Baliga RS, Piao S, Kanderian A, Pavia S, Hamlin RL, McCarthy PM, Bauer JA, Van Wagoner DR (2001) Ascorbate Attenuates Atrial Pacing-Induced Peroxynitrite Formation and Electrical Remodeling and Decreases the Incidence of Postoperative Atrial Fibrillation. Circulation Res 89:e32–e38PubMedGoogle Scholar
  18. 18.
    Cha TJ, Ehrlich JR, Zhang L, Shi YF, Tardif JC, Leung TK, Nattel S (2004) Dissociation between ionic remodeling and ability to sustain atrial fibrillation during recovery from experimental congestive heart failure. Circulation 109:412–428CrossRefPubMedGoogle Scholar
  19. 19.
    Chen YJ, Chen YC, Chan P, Lin CI, Chen SA (2003) Angiotensin II increases the arrhythmogenic activity of pulmonary vein myocytes. PACE 26(II):632 (abstract)PubMedGoogle Scholar
  20. 20.
    Chung MK, Martin DO, Sprecher D, Wazni O, Kanderian A, Carnes CA, Bauer JA, Tchou PJ, Niebauer MJ, Natale A, Van Wagoner DR (2001) C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation 104:2886–2891PubMedGoogle Scholar
  21. 21.
    Coker ML, Jolly JR, Joffs C, Etoh T, Holder JR, Bond BR, Spinale FG (2001) Matrix metalloproteinase expression and activity in isolated myocytes after neurohumoral stimulation. Am J Physiol 281:H543–H551PubMedGoogle Scholar
  22. 22.
    Conway DS, Pearce LA, Chin BS, Hart RG, Lip GY (2003) Prognostic value of plasma von Willebrand factor and soluble P-selectin as indices of endothelial damage and platelet activation in 994 patients with non-valvular atrial fibrillation. Circulation 107:3141–3145CrossRefPubMedGoogle Scholar
  23. 23.
    Davies MJ, Pomerance A (1972) Pathology of atrial fibrillation in man. Br Heart J 34:520–525PubMedGoogle Scholar
  24. 24.
    Di Napoli M, Papa F, Bocola V (2001) C-reactive protein in ischemic stroke: an independent prognostic factor. Stroke 32:917–924PubMedGoogle Scholar
  25. 25.
    Di Lisa F, De Tullio R, Salamino F, Barbato R, Melloni E, Siliprandi N, Schiaffino S, Pontremoli S (1995) Specific degradation of troponin T and I by mu-calpain and its modulation by substrate phosphorylation. Biochem J 308:57–61PubMedGoogle Scholar
  26. 26.
    Dobrev D, Ravens U (2003) Remodeling of cardiomyocyte ion channels in human atrial fibrillation. Basic Res Cardiol 98:137–148PubMedGoogle Scholar
  27. 27.
    Dobrev D, Wettwer E, Kortner A, Knaut M, Schuler S, Ravens U (2002) Human inward rectifier potassium channels in chronic and postoperative atrial fibrillation. Cardiovasc Res 54:397–404CrossRefPubMedGoogle Scholar
  28. 28.
    Dzau VJ, Sasamura H, Hein L (1993) Heterogeneity of angiotensin synthetic pathways and receptor subtypes: physiological and pharmacological implications. J Hypertens 11:S13–S18PubMedGoogle Scholar
  29. 29.
    Eto K, Huet C, Tarui T, Kupriyanov S, Liu HZ, Puzon-McLaughlin W, Zhang XP, Sheppard D, Engvall E, Takada Y (2002) Functional classification of ADAMs based on a conserved motif for binding to integrin alpha 9beta 1: implications for sperm-egg binding and other cell interactions. J Biol Chem 277:17804–17810CrossRefPubMedGoogle Scholar
  30. 30.
    Fatkin D, Kuchar DL, Thorburn CW, Feneley MP (1994) Transesophageal echocardiography before and during direct current cardioversion of atrial fibrillation: evidence for atrial stunning as a mechanism of thrombembolic complications. J Am Coll Cardiol 23:307–316PubMedGoogle Scholar
  31. 31.
    Frustaci A, Chimenti C, Bellocci F, Morgante E, Russo MA, Maseri A (1997) Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation 96:1180–1184PubMedGoogle Scholar
  32. 32.
    Fukuchi M, Watanabe J, Kumagai K, Katori Y, Baba S, Fukuda K, Yagi T, Iguchi A, Yokoyama H, Miura M, Kagaya Y, Sato S, Tabayashi K, Shirato K (2001) Increased von Willebrand Factor in the endocardium as a local predisposing factor for thrombogenesis in overloaded human atrial appendage. J Am Coll Cardiol 37:1436–1442CrossRefPubMedGoogle Scholar
  33. 33.
    Furberg CD, Psaty BM, Manolio TA, Gardin JM, Smith VE, Rautaharju PM (1994) Prevalence of atrial fibrillation in elderly subjects. Am J Cardiol 74:236–241CrossRefPubMedGoogle Scholar
  34. 34.
    Gao WD, Atar D, Liu Y, Perez NG, Murphy AM, Marban E (1997) Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res 80:393–399PubMedGoogle Scholar
  35. 35.
    Gaspo R, Bosch RF, BouAbboud E, Nattel S (1997) Tachycardia-induced changes in Na+current in a chronic dog model of atrial fibrillation. Circ Res 81:1045–1052PubMedGoogle Scholar
  36. 36.
    Gaspo R, Bosch RF, Talajic M, Nattel S (1997) Functional mechanisms underlying tachycardia-induced sustained atrial fibrillation in a chronic dog model. Circulation 96:4027–4035PubMedGoogle Scholar
  37. 37.
    Goette A, Hoffmanns P, Enayati W, Meltendorf U, Geller JC, Klein HU (2001) Effect of successful electrical cardioversion on serum aldosterone in patients with persistent atrial fibrillation. Am J Cardiol 88:906–909CrossRefPubMedGoogle Scholar
  38. 38.
    Goette A, Arndt M, Röcken C, Staack T, Geller JC, Huth C, Ansorge S, Klein HU, Lendeckel U (2000) Regulation of Angiotensin II Receptor Subtypes During Atrial Fibrillation in Humans. Circulation 101:2678–2681PubMedGoogle Scholar
  39. 39.
    Goette A, Staack T, Arndt M, Röcken C, Geller C, Huth C, Ansorge S, Klein HU, Lendeckel U (2000) Increased expression of extracellular-signal regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J Am Coll Cardiol 35:1669–1677CrossRefPubMedGoogle Scholar
  40. 40.
    Goette A, Ittenson A, Hoffmanns P, Reek S, Hartung W, Klein HU, Ansorge S, Geller JC (2000) Increased expression of P-selectin during chronic atrial fibrillation. Pacing Clin Electrophysiol 23(II):1872–1875PubMedGoogle Scholar
  41. 41.
    Goette A, Arndt M, Rocken C, Staack T, Bechtloff R, Reinhold D, Huth C, Ansorge S, Klein HU, Lendeckel U (2002) Calpains and cytokines in fibrillating human atria. Am J Physiol Heart Circ Physiol 283:H264–H272PubMedGoogle Scholar
  42. 42.
    Goette A, Jentsch-Ullrich K, Lendeckel U, Röcken C, Agbaria M, Auricchio A, Mohren M, Franke A, Klein HU (2003) Effect of persistent atrial fibrillation and electrical cardioversion on haematopoietic stem cells. Circulation 108:2446–2449CrossRefPubMedGoogle Scholar
  43. 43.
    Goette A, Lendeckel U, Klein HU (2002) Signal transduction systems and atrial fibrillation. Cardiovasc Res 54:247–258CrossRefPubMedGoogle Scholar
  44. 44.
    Goette A, Lendeckel U (2003) Novel pharmacologic strategies in the therapy of atrial fibrillation. HEART Drug 3:180–190CrossRefGoogle Scholar
  45. 45.
    Goette A, Lendeckel U (2004) Non-channel drug targets in atrial fibrillation. Pharmacol Therap 102:17–36CrossRefGoogle Scholar
  46. 46.
    Gold RL, Haffajee CI, Charos G, Sloan K, Baker S, Alpert JS (1986) Amiodarone for refractory atrial fibrillation. Am J Cardiol 57:124–127CrossRefPubMedGoogle Scholar
  47. 47.
    Gottlieb SS, Dickstein K, Fleck E, Kostis J, Levine TB, LeJemtel T, De-Kock M (1993) Hemodynamic and neurohumoral effects of the angiotensin II antagonist losartan in patients with congestive heart failure. Circulation 88:1602–1609PubMedGoogle Scholar
  48. 48.
    Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Metayer P, Clementy J (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666CrossRefPubMedGoogle Scholar
  49. 49.
    Hohnloser SH, Ehrlich JR, Steul K, Breuer S (2002) Relationship between clinical and echocardiography-derived parameters and atrial activation as measured by P-wave signal-averaged electrocardiogram. Z Kardiol 91:404–409CrossRefPubMedGoogle Scholar
  50. 50.
    Hoit BD, Takeishi Y, Cox MJ, Gabel M, Kirkpatrick D, Walsh RA, Tyagi SC (2002) Remodeling of the left atrium in pacing-induced atrial cardiomyopathy. Mol Cell Biochem 238:145–150CrossRefPubMedGoogle Scholar
  51. 51.
    Hoit BD (2003) Matrix metalloproteinases and atrial structural remodeling (editorial comment). J Am Coll Cardiol 42:345–347CrossRefPubMedGoogle Scholar
  52. 52.
    Khan A, Moe GW, Nili N, Rezaei E, Eskandarian M, Butany J, Strauss BH (2004) The cardiac atria are chambers of active remodeling and dynamic collagen turnover during evolving haert failure. J Am Coll Cardiol 43:68–76CrossRefPubMedGoogle Scholar
  53. 53.
    Klein RM, Vester EG, Brehm MU, Dees H, Picard F, Niederacher D, Beckmann MW, Strauer BE (2000) Entzündung des Myokards als Arrhythmietrigger Z Kardiol 89 (Suppl3):24–35CrossRefPubMedGoogle Scholar
  54. 54.
    Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001), Neovascularization of ischemic myocardium by human bonemarrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine 7:430–436CrossRefPubMedGoogle Scholar
  55. 55.
    Kumagai K, Fukunami M, Ohmori M, Kitabatake A, Kamada T, Hoki N (1990) Increased intracardiovascular clotting in patients with chronic atrial fibrillation. J Am Coll Cardiol 16:377–380PubMedGoogle Scholar
  56. 56.
    Lendeckel U, Arndt M, Wrenger S, Nepple K, Huth C, Ansorge S, Klein HU, Goette A (2001) Expression and activity of ectopeptidases in fibrillating human atria. J Mol Cell Cardiol 33:1273–1281CrossRefPubMedGoogle Scholar
  57. 57.
    Li D, Fareh S, Leung TK, Nattel S (1999) Promotion of atrial fibrillation by heart failure in dogs. Atrial remodeling of a different sort. Circulation 100:87–95PubMedGoogle Scholar
  58. 58.
    Li D, Shinagawa K, Pang L, Leung TK, Cardin S, Wang Z, Nattel S (2001) Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation 104:2608–2614PubMedGoogle Scholar
  59. 59.
    Li YY, Feldman AM, Sun Y, McTiernan CF (1998) Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 98:1728–1734PubMedGoogle Scholar
  60. 60.
    Lip GYH, Beevers DG (1995) History, epidemiology and importance of atrial fibrillation. Br Med J 311:1361–1363Google Scholar
  61. 61.
    Lip GY, Lip PL, Zarifis J, Watson RD, Bareford D, Lowe GD, Beevers DG (1996) Fibrin D-dimer and β-thromboglobulin as markers of thrombogenesis and platelet activation in atrial fibrillation. Effects of introducing ultra-low dose warfarin and aspirin. Circulation 94:425–431PubMedGoogle Scholar
  62. 62.
    Madrid AH, Bueno MG, Rebollo JM, Marin I, Pena G, Bernal E, Rodriguez A, Cano L, Cano JM, Cabeza P, Moro C (2002) Use of irbesartan to maintain sinus rhythm in patients with long-lasting persistent atrial fibrillation: a prospective and randomized study. Circulation 106:331–336CrossRefPubMedGoogle Scholar
  63. 63.
    Manning WJ, Silverman DJ, Katz SE, Riley MF, Come PC, Doherty RM, Munson JT, Douglas PS (1994) Impaired left atrial mechanical function after cardioversion: relation to the duration of atrial fibrillation. J Am Coll Cardiol 23:1535–1540PubMedGoogle Scholar
  64. 64.
    Matsubara H (1998) Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res 83:1182–1191PubMedGoogle Scholar
  65. 65.
    McEwan PE, Gray GA, Sherry L, Webb DJ, Kenyon CJ (1998) Differential effects of angiotensin II on cardiac cell proliferation and intramyocardial perivascular fibrosis in vivo. Circulation 98:2765–2773PubMedGoogle Scholar
  66. 66.
    Middlekauf HR, Stevenson WG, Stevenson LW (1991) Prognostic significance of atrial fibrillation in advanced heart failure. A study of 390 patients. Circulation 84:40–48PubMedGoogle Scholar
  67. 67.
    Mihm MJ, Yu F, Carnes CA, Reiser PJ, McCarthy PM, Van Wagoner DR, Bauer JA (2001) Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation 104:174–180PubMedGoogle Scholar
  68. 68.
    Minamino T, Kitakaze M, Sato H, Asanuma H, Funaya H, Koretsune Y, Hori M (1997) Plasma levels of nitrite/nitrate and platelet cGMP levels are decreased in patients with atrial fibrillation. Arterioscler Thromb Vasc Biol 17:3191–3195PubMedGoogle Scholar
  69. 69.
    Mizuno Y, Yoshimura M, Yasue H, Sakamoto T, Ogawa H, Kugiyama K, Harada E, Nakayama M, Nakamura S, Ito T, Shimasaki Y, Saito Y, Nakao K (2001) Aldosterone production is activated in failing ventricle in humans. Circulation 103:72–77PubMedGoogle Scholar
  70. 70.
    Nakashima H, Kumagai K, Urata H, Gondo N, Ideishi M, Arakawa K (2000) Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation. Circulation 101:2612–2617PubMedGoogle Scholar
  71. 71.
    Nath D, Slocombe PM, Webster A, Stephens PE, Docherty AJ, Murphy G (2000) Meltrin gamma(ADAM-9) mediates cellular adhesion through alpha(6)beta (1) integrin, leading to a marked induction of fibroblast cell motility. J Cell Sci 113:2319–2328PubMedGoogle Scholar
  72. 72.
    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infracted myocardium. Nature 410:701–705CrossRefGoogle Scholar
  73. 73.
    Osterziel KJ, Scheffold T, Perrot A, Dietz R (2001) Genetik der dilatativen Kardiomyopathie. Z Kardiol 90:786–795CrossRefGoogle Scholar
  74. 74.
    Pederson OD, Bagger H, Kober L, Torp-Pederson C (1999) Trandolapril reduces the incidence of atrial fibrillation after myocardial infarction in patients with left ventricular dysfunction. Circulation 100:376–380PubMedGoogle Scholar
  75. 75.
    Quaini F, Urbanek K, Beltrami A, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2002) Chimerism of the transplanted heart. N Engl J Med 346:5–15CrossRefPubMedGoogle Scholar
  76. 76.
    Reimold SC, Cantillon CO, Friedman PL, Antman EM (1993) Propafenone versus sotalol for supression of recurrent symptomatic atrial fibrillation. Am J Cardiol 71:558–563CrossRefPubMedGoogle Scholar
  77. 77.
    Roldan V, Marin F, Blann AD, Garcia A, Marco P, Sogorb F, Lip GY (2003) Interleukin-6, endothelial activation and thrombogenesis in chronic atrial fibrillation. Eur Heart J 24:1373–1380CrossRefPubMedGoogle Scholar
  78. 78.
    Röcken C, Peters B, Juenemann G, Saeger W, Klein HU, Huth C, Roessner A, Goette A (2002) Atrial amyloidosis: an arrhythmogenic substrate for persistent atrial fibrillation. Circulation 106:2091–2097CrossRefPubMedGoogle Scholar
  79. 79.
    Rossi E, Biasucci LM, Citterio F, Pelliccioni S, Monaco C, Ginnetti F, Angiolillo DJ, Grieco G, Liuzzo G, Maseri A (2002) Risk of myocardial infarction and angina in patients with severe peripheral vascular disease: predictive role of C-reactive protein. Circulation 105:800–803CrossRefPubMedGoogle Scholar
  80. 80.
    Sanfilippo AJ, Abascal VM, Sheehan M, Oertel LB, Harrigan P, Hughes RA, Weyman AE (1990) Atrial enlargement as a consequence of atrial fibrillation. A prospective echocardiographic study. Circulation 82:792–797PubMedGoogle Scholar
  81. 81.
    Schotten U, Ausma J, Stellbrink C, Sabatschus I, Vogel M, Frechen D, Schoendube F, Hanrath P, Allessie MA (2001) Cellular mechanisms of depressed atrial contractility in patients with chronic atrial fibrillation. Circulation 103:691–698PubMedGoogle Scholar
  82. 82.
    Shinagawa K, Mitamura H, Ogawa S, Nattel S (2002) Effects of inhibiting Na(+)/H(+)-exchange or angiotensin converting enzyme on atrial tachycardia-induced remodeling. Cardiovasc Res 54:438–446CrossRefPubMedGoogle Scholar
  83. 83.
    Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, Imaizumi T (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103:2776–2779PubMedGoogle Scholar
  84. 84.
    Spinale FG, Coker ML, Heung LJ, Bond BR, Gunasinghe HR, Etoh T, Goldberg AT, Zellner JL, Crumbley AJ (2000) A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation 102:1944–1949PubMedGoogle Scholar
  85. 85.
    Sugden PH, Clerk A (1997) Regulation of the ERK subgroup of MAP kinase cascade through G protein-coupled receptors. Cell Signal 9:337–351CrossRefPubMedGoogle Scholar
  86. 86.
    Sun H, Gaspo R, Leblanc N, Nattel S (1998) Cellular mechanisms of atrial contractile dysfunction caused by sustained atrial tachycardia. Circulation 98:719–727PubMedGoogle Scholar
  87. 87.
    Todd DM, Skanes AC, Guiraudon G, Guiraudon C, Krahn AD, Yee R, Klein GJ (2003) Role of the posterior left atrium and pulmonary veins in human lone atrial fibrillation. Circulation 108:3108–3114CrossRefPubMedGoogle Scholar
  88. 88.
    Tsai CF, Tai CT, Hsieh MH, Lin WS, Yu WC, Ueng KC, Ding YA, Chang MS, Chen SA (2000) Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: electrophysiological characteristics and results of radiofrequency ablation. Circulation 102:67–74PubMedGoogle Scholar
  89. 89.
    Unverferth DV, Fertel RH, Unverferth BJ, Leier CV (1984) Atrial fibrillation in mitral stenosis: histologic, hemodynamic and metabolic factors. Int J Cardiol 5:143–154CrossRefPubMedGoogle Scholar
  90. 90.
    Van Gelder IC, Hagens VE, Bosker HA, Kingma JH, Kamp O, Kingma T, Said SA, Darmanata JI, Timmermans AJ, Tijssen JG, Crijns HJ (2002) A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N Engl J Med 347:1834–1840CrossRefPubMedGoogle Scholar
  91. 91.
    Vermes E, Tardif JC, Bourassa MG, Racine N, Levesque S, White M, Guerra PG, Ducharme A (2003) Enalapril decreases the incidence of atrial fibrillation in patients with left ventricular dysfunction. Circulation 107:2926–2931CrossRefPubMedGoogle Scholar
  92. 92.
    Völler H, Dietz R (1999) Linksventrikuläres Remodeling: Pathophysiologische Mechanismen und Therapieempfehlungen. Z Kardiol 88:982–990CrossRefPubMedGoogle Scholar
  93. 93.
    Vester EG (1998) Myokardischämie und ventrikuläre Arrhythmien. Z Kardiol 87 (Suppl.2):24–35CrossRefGoogle Scholar
  94. 94.
    Waldecker B, Grempels E, Waas W, Voss R, Schmidt C, Steen-Mueller MK, Tillmanns H (2003) Akuter Myokardinfarkt bei prämenopausalen Frauen. Z Kardiol 92:476–482PubMedGoogle Scholar
  95. 95.
    Wijffels MCEF, Kirchhof CJHJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92:1954–1968PubMedGoogle Scholar
  96. 96.
    Wyse DG, Waldo AL, DiMarco JP, Domanski MJ, Rosenberg Y, Schron EB, Kellen JC, Greene HL, Mickel MC, Dalquist JE, Corley SD (2002) A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med 347:1825–1833PubMedGoogle Scholar
  97. 97.
    Xu J, Cui G, Esmailian F, Plunkett M, Marelli D, Ardehali A, Odim J, Laks H, Sen L (2004) Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation 109:363–368CrossRefPubMedGoogle Scholar
  98. 98.
    Yamashita T, Sekiguchi A, Iwasaki YK, Sagara K, Hatano S, Iinuma H, Aizawa T, Fu LT (2003) Thrombomodulin and tissue factor pathway inhibitor in endocardium of rapidly paced rat atria. Circulation 108:2450–2452CrossRefPubMedGoogle Scholar
  99. 99.
    Zhang XP, Kamata T, Yokoyama K, Puzon-McLaughlin W, Takada Y (1998) Specific interaction of the recombinant disintegrin-like domain of MDC-15 (metargidin, ADAM-15) with integrin alpha5beta3. J Biol Chem 273:7345–7350CrossRefPubMedGoogle Scholar
  100. 100.
    Zhou M, Graham R, Russell G, Croucher PI (2001) MDC-9 (ADAM-9/Meltrin gamma) functions as an adhesion molecule by binding the alpha(v)beta(5) integrin. Biochem Biophys Res Commun 280:574–580CrossRefPubMedGoogle Scholar

Copyright information

© Steinkopff Verlag 2004

Authors and Affiliations

  1. 1.Otto-von-Guericke-Universitätsklinik Magdeburg, Klinik für Kardiologie, Angiologie und PneumologieMagdeburgGermany
  2. 2.Otto-von-Guericke-Universitätsklinik Magdeburg Klinik für Kardiologie, Angiologie und PneumologieMagdeburgGermany
  3. 3.Otto-von-Guericke-Universitätsklinik Magdeburg, Institut für Experimentelle Innere MedizinMagdeburgGermany

Personalised recommendations