Advertisement

Zeitschrift für Kardiologie

, Volume 93, Issue 11, pp 890–896 | Cite as

Real-time myocardial contrast echocardiography for the detection of stress-induced myocardial ischemia

Comparison with 99mTc-sestamibi single photon emission computed tomography
  • A.-E. Dubart
  • K. G. Carvalho da SilvaJr.
  • G. Korosoglou
  • R. Bekeredjian
  • A. Hansen
  • S. Hardt
  • M. Rosenberg
  • N. Ferrari
  • B. Hoerig
  • J. Zehelein
  • H. Kuecherer
ORIGINAL PAPER

Summary

Background

Real-time contrast echocardiography (MCE) is a new promising technique for assessing myocardial perfusion. The purpose of this study was to test whether realtime MCE can be used to detect functionally significant coronary artery stenosis in patients with known or suspected coronary artery disease. Myocardial contrast echocardiographic studies were compared with nearly simultaneous 99mTc-sestamibi single photon emission computed tomography (SPECT) as a clinical standard reference to evaluate regional myocardial perfusion defects.

Methods

Real-time MCE based on continuous infusion of Optison (8–10 ml/h) was performed in 66 patients during standard 99mTc-SPECT dipyridamole (0.56 mg/kg×4 min) stress testing. Images were obtained in apical 4- and 2-chamber views, each divided into 6 segments. Tracer uptake and myocardial opacification were visually analyzed for each segment by two pairs of blinded observers and graded as normal, mildly reduced, severely reduced, or absent. In 792 myocardial segments, myocardial opacification by MCE was uninterpretable in 143 (18%) segments and tracer uptake by SPECT was not clearly defined in 92 (12%) segments. Interobserver variability for MCE was good with concordance rates of 83% (κ=0.72) for rest- and 86% (κ=0.76) for stress images. Overall concordance between MCE and SPECT was good (83%, κ=0.63) at a segmental level. In the diagnosis of fixed and reversible defects, and of normal perfusion, concordance rates were 73, 65 and 83%, respectively. When analysis was performed at the regional level, we found comparable levels of concordance rates for LAD (83%, κ=0.59), LCX (86%, κ=0.64) and RCA (80%, κ=0.68) perfusion territories.

Conclusions

These findings suggest that realtime MCE is a clinically acceptable method to evaluate myocardial perfusion defects during dipyridamole stress testing.

Key words

Contrast echocardiography myocardial perfusion myocardial ischemia coronary artery disease perfusion imaging 

Echtzeit-Myokardkontrast-Echokardiographie zur Erfassung belastungsinduzierter Myokardischämie

Zusammenfassung

Die Echtzeitkontrastechokardiographie (MCE) ist ein neues Verfahren zur Beurteilung der Myokardperfusion. Ziel der Studie war es zu testen, ob mittels Echtzeit MCE funktionell signifikante Koronarstenosen bei Patienten mit vermuteter oder bekannter koronarer Herzerkrankung erkannt werden können. Kontrastechokardiographische Untersuchungen wurden mit nahezu simultan durchgeführten 99mTc-sestamibi SPECT-Untersuchungen verglichen. Die SPECT-Szintigraphie diente als klinischer Goldstandard zum Nachweis regionaler myokardialer Perfusionsdefekte. Echtzeit-Kontrastechokardiographische Untersuchungen wurden unter Verwendung einer kontinuierlichen Infusion von Optison® (8–10 ml/h) durchgeführt. Eingeschlossen wurden 70 konsekutive Patienten, bei denen aus klinischer Indikation eine pharmakologische Stressuntersuchung (99mTc-SPECT, Dipyridamol 0,56 mg/kg×4 Minuten) durchgeführt wurde. Apikale Vier- und Zweikammerblicke wurden in jeweils 6 Segmente unterteilt. Traceranreicherung und Myokardkontrastierung wurden von zwei unabhängigen Untersuchern visuell beurteilt (als normal, gering reduziert, stark reduziert oder fehlend). Die Myokardkontrastierung konnte in 143 von 792 Wandsegemten (18%) nicht adäquat analysiert werden. Die Traceranreicherung war in 92 Segmenten (12%) nicht adäquat analysierbar. Die Untersucherübereinstimmung war akzeptabel (Konkordanzraten 83% (κ=0,72) für Ruhe- und 86% (κ=0,76) für stressechokardiographische Untersuchungen). Die Übereinstimmung zwischen MCE und SPECT-Befunden auf segmentaler Ebene war gut (83%, κ=0,63). Gute Übereinstimmungen wurden auch bei der Erfassung fixer und reversibler Perfusionsdefekte und normal perfundierter Segmente gefunden (65, 73 und 83%). Bei der Auswertung einzelner Koronarversorgungsgebiete lagen für alle drei Territorien gute Übereinstimmungen vor (LAD, 83%, κ=0,59; LCX, 86%, κ=0,64 und RCA, 80%, κ=0,68). Diese Daten zeigen, dass sich die Echtzeitkontrastechokardiographie zur Erfassung von Perfusionsdefekten eignet.

Schlüsselwörter

Kontrastechokardiographie Myokardperfusion Myokardischämie Koronare Herzerkrankung Perfusionsdiagnostik 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armstrong WF, Mueller TM, Kinney EL, Ticker EG, Dillon JC, Feigenbaum H (1982) Assessment of myocardial perfusion abnormalities with contrast-enhanced two-dimensional echocardiography. Circulation 66:166–173PubMedGoogle Scholar
  2. 2.
    Badruddin SM, Ahmad A, Mickelson J, Abukhalil J, Winters WL, Nagueh SF, Zoghbi WA (1999) Supine bicycle versus post-treadmill exercise echocardiography in the detection of myocardial ischemia: a randomized singleblind crossover trial. J Am Coll Cardiol 33:1485–1490CrossRefPubMedGoogle Scholar
  3. 3.
    Becher H, Burns PN (2000) Chapter 1: Contrast agents for echocardiography: Principles and Instrumentation. Handbook of Contrast Echocardiography. SpringerGoogle Scholar
  4. 4.
    Bekeredjian R, Filusch A, Hilbel T, Reiter M, Foster E, Botvinick EH, Schiller NB, Cahalan M, Merrick S, Balea M, Russell I, Kuecherer (2000) Fourier-phase imaging can be used to objectively analyze myocardial contrast echocardiograms. IEEE: Computers in Cardiology 27:193–197Google Scholar
  5. 5.
    Cheirif J, Desir RM, Bolli R, Mahmarian JJ, Zoghbi WA, Verani MS, Quinones MA (1992) Relation of perfusion defects observed with myocardial contrast echocardiography to the severity of coronary stenosis: correlation with Thallium-201 single-photon emission tomography. J Am Coll Cardiol 19:1343–1349PubMedGoogle Scholar
  6. 6.
    Heinle SK, Noblin J, Goree-best P, Mello A, Ravad G, Mull S, Mammen P, Grayburn PA (2000) Assessment of myocardial perfusion by harmonic power Doppler imaging at rest and during adenosin stress: comparison with 99mTc-sestamibi SPECT imaging. Circulation 102:55–60PubMedGoogle Scholar
  7. 7.
    Kaul S, Senior R, Dittrich H, Raval U, Khattar R, Lahiri A (1997) Detection of coronary artery disease with myocardial contrast echocardiography: comparison with 99mTc-sestamibi single-photon emission computed tomography. Circulation 96:785–792PubMedGoogle Scholar
  8. 8.
    Leong-Poi H, Rim SJ, Le E, Fisher NG, Wei K, Kaul S (2002) Perfusion versus function: the ischemic cascade in demand ischemia. Implication of single-vessel versus multivessel stenosis. Circulation 105:987–992CrossRefPubMedGoogle Scholar
  9. 9.
    Masugata H, Peters B, Lafitte S, Strachan GM, Ohmori K, DeMaria AN (2001) Quantitative assessment of myocardial perfusion during graded coronary stenosis by real-time myocardial contrast echo refilling curves. J Am Coll Cardiol 37:262–269CrossRefPubMedGoogle Scholar
  10. 10.
    Oraby MA, Hays J, Maklady FA, El-Hawary AA, Zabalgoita M (2002) Assessment of myocardial perfusion during pharmacologic contrast stress echocardiography. Am J Cardiol 89:640–644CrossRefPubMedGoogle Scholar
  11. 11.
    Oraby MA, Hays J, Maklady FA, El-Hawary AA, Yaneza LO, Zabalgoita M (2002) Comparison of real-time coherent contrast imaging to dipyridamole Thallium-201 single photon emission computed tomography for assessment of myocardial perfusion and left ventricular wall motion. Am J Cardiol 90:449–454CrossRefPubMedGoogle Scholar
  12. 12.
    Porter T, Xie F, O’Leary E, Silver M, Kricsfeld D (2000) The effectiveness of power pulse inversion imaging in detecting myocardial perfusion defects during stress echocardiography. J Am Soc Echocardiogr 13:437 (abstract 8A)Google Scholar
  13. 13.
    Shimoni S, Zoghbi WA, Iskander S, Gobar S, Porter TR (2001) Real-time assessment of myocardial perfusion and wall motion during bicycle and treadmill exercise echocardiography: comparison with single photon emission computed tomography. J Am Coll Cardiol 37:741–747CrossRefPubMedGoogle Scholar
  14. 14.
    Tiemann K, Lohmeier S, Kintz S, Koster J, Pohl C, Burns P, Nanda NC, Ludenitz B, Becher H (1999) Real-time contrast echo assessment of myocardial perfusion at low emission power: first experimental and clinical results using power pulse inversion imaging. Echocardiography 16:799–809PubMedGoogle Scholar
  15. 15.
    Wei K, Jayaweera AR, Soroosh F, Andre L, Danny MS, Kaul S (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97:473–483PubMedGoogle Scholar
  16. 16.
    Korosoglou G, da Silva KG Jr, Labadze N, Dubart AE, Hansen A, Rosenberg M, Zehelein J, Kuecherer H (2004) Real-time myocardial contrast echocardiography for pharmacologic stress testing: is quantitative estimation of myocardial blood flow reserve necessary? J Am Soc Echocardiogr 17:1–9CrossRefPubMedGoogle Scholar

Copyright information

© Steinkopff Verlag 2004

Authors and Affiliations

  • A.-E. Dubart
    • 1
  • K. G. Carvalho da SilvaJr.
    • 1
  • G. Korosoglou
    • 1
  • R. Bekeredjian
    • 1
  • A. Hansen
    • 1
  • S. Hardt
    • 1
  • M. Rosenberg
    • 1
  • N. Ferrari
    • 2
  • B. Hoerig
    • 1
  • J. Zehelein
    • 1
  • H. Kuecherer
    • 1
  1. 1.Department of Cardiology, Innere Medizin IIIHeidelbergGermany
  2. 2.Clinical Investigation CenterUniversity of LilleLilleFrance

Personalised recommendations