Zeitschrift für Gerontologie und Geriatrie

, Volume 52, Issue 5, pp 460–467 | Cite as

New associations of the Multidimensional Prognostic Index

  • Anna Maria Meyer
  • Ingrid Becker
  • Giacomo Siri
  • Paul Thomas Brinkkötter
  • Thomas Benzing
  • Alberto Pilotto
  • M. Cristina PolidoriEmail author



The multidimensional prognostic index (MPI) is a validated, sensitive, and specific prognosis estimation tool based on a comprehensive geriatric assessment (CGA). The MPI accurately predicts mortality after 1 month and 1 year in older, multimorbid patients with acute disease or relapse of chronic conditions.


To evaluate whether the MPI predicts indicators of healthcare resources, i.e. grade of care (GC), length of hospital stay (LHS) and destination after hospital discharge in older patients in an acute medical setting.

Material and methods

In this study 135 hospitalized patients aged 70 years and older underwent a CGA evaluation to calculate the MPI on admission and discharge. Accordingly, patients were subdivided in low (MPI‑1, score 0–0.33), moderate (MPI-2, score 0.34–0.66) and high (MPI-3, score 0.67–1) risk of mortality. The GC, LHS and the discharge allocation were also recorded.


The MPI score was significantly related to LHS (p = 0.011) and to GC (p < 0.001). In addition, MPI-3 patients were significantly more often transferred from other hospital settings (p = 0.007) as well as significantly less likely to be discharged home (p = 0.04) than other groups.


The CGA-based MPI values are significantly associated with use of indicators of healthcare resources, including GC, LHS and discharge allocation. These findings suggest that the MPI may be useful for resource planning in the care of older multimorbid patients admitted to hospital.


Comprehensive Geriatric Assessment Grade of care Prognosis Aging medicine Clinical decision making 

Neue Assoziationen des Multidimensionalen Prognostischen Index



Der Multidimensionale Prognostische Index (MPI) ist ein validiertes, sensitives und spezifisches Instrument zur Abschätzung der Prognose auf der Basis des Comprehensive Geriatric Assessment (CGA). Der MPI eignet sich für eine genaue Vorhersage der Einmonats- und der Einjahresmortalität für ältere, multimorbide Patienten mit einer akuten Erkrankung oder mit einem Rezidiv bzw. einer Exazerbation einer chronischen Erkrankung.


Verifiziert werden sollte, ob sich mit Hilfe des MPI bei älteren, hospitalisierten Patienten in einem akuten Setting Indikatoren gesundheitsassoziierter Ressourcen, wie Pflegegrad („grade of care“, GC), Dauer des stationären Aufenthalts („length of hospital stay“, LHS) und das Verlegungsziel, genau vorhersagen lassen.

Material und Methoden

Einhundertfünfunddreißig hospitalisierte Patienten im Alter über 70 Jahren wurden mit dem CGA untersucht, um den MPI bei Aufnahme und bei Entlassung zu berechnen. Dabei wurden die Patienten verschiedenen Risikobereichen zugeordnet: niedriges (MPI-1, Score 0–0,33), mittleres (MPI-2, 0,34–0,66) und hohes (MPI-3, 0,67–1) Mortalitätsrisiko. Zusätzlich wurden GC, LHS und Verlegungsziel erhoben.


Der MPI-Wert war signifikant mit der LHS (p = 0,011) und dem GC (p < 0,001) assoziiert. Zusätzlich wurden MPI-3-Patienten signifikant häufiger aus anderen Krankenhäusern bei Aufnahme verlegt (p = 0,007) als die der anderen Gruppen, und es war weniger wahrscheinlich, dass die MPI-3-Patienten nach Hause entlassen wurden (p = 0,04).


Die CGA-basierten MPI-Werte waren signifikant mit Indikatoren gesundheitsbezogener Ressourcen assoziiert, einschließlich GC, LHS und Verlegungsziel. Diese Ergebnisse deuten darauf hin, dass der MPI bei der Ressourcenplanung in der Versorgung von älteren, multimorbiden und hospitalisierten Patienten hilfreich sein könnte.


Geriatrisches Assessment Pflegegrad Prognose Altersmedizin Klinische Entscheidungsfindung 



The results were partly presented at the Annual Congress of the German Geriatrics Society 2017, where the study MPI_InGAH received the prize for the “Promotion of the interdisciplinary age medicine” of the German Geriatrics Society. The authors are grateful to the patients who took their time during the hospital stay to take part of that interview.

Author contributions

AMM and MCP conceived and designed the clinical trial. AMM performed the experiments. AMM, IB and GS analyzed the data. AMM wrote the paper. AMM, MCP and IB conceived the manuscript. AMM, MCP, IB, TB, PTB and AP performed critical revision.

Compliance with ethical guidelines

Conflict of interest

A.M. Meyer, I. Becker, G. Siri, P.T. Brinkkötter, T. Benzing, A. Pilotto and M. C. Polidori declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

391_2018_1471_MOESM1_ESM.docx (41 kb)
Supplement 1 Calculating the multidimensional prognostic index (MPI) after Pilotto et al. [12]


  1. 1.
    Angleman SB et al (2015) Multidimensional prognostic index in association with future mortality and number of hospital days in a population-based sample of older adults: results of the EU funded MPI_AGE project. PLoS ONE. Google Scholar
  2. 2.
    Baake CP (ed) (2017) Begutachtungsverfahren NBA – Pflegegrad bei Erwachsenen. Walhalla, RegensburgGoogle Scholar
  3. 3.
  4. 4.
    Bliss MR, McLaren R, Exton-Smith AN (1966) Mattresses for preventing pressure sores in geriatric patients. Mon Bull Minist Health Public Health Lab Serv 25:238–268Google Scholar
  5. 5.
  6. 6.
  7. 7.
    Campbell SE, Seymour DG, Primrose WR, Lynch JE et al (2005) A multi-centre European study of factors affecting the discharge destination of older people admitted to hospital: analysis of in-hospital data from the ACMEplus project. Age Ageing 34(5):467–475. CrossRefGoogle Scholar
  8. 8.
    Challiner Y, Carpenter GI, Potter J et al (2003) Performance indicators for hospital services for older people. Age Ageing 32:343–346CrossRefGoogle Scholar
  9. 9.
    Dent E, Kowal P, Hoogendijk EO (2016) Frailty measurement in research and clinical practice: A review. Eur J Intern Med 31:3–10. CrossRefGoogle Scholar
  10. 10.
  11. 11.
    European Union (2017) State of health in the EU: companion report 2017. Accessed 2 Mar 2018Google Scholar
  12. 12.
    Forsyth NR, McWhir J (2007) Human embryonic stem cell telomere length impacts directly on clonal progenitor isolation frequency. Rejuvenation Res. Google Scholar
  13. 13.
    Gallucci M, Battistella G, Bergamelli C, Spagnolo P et al (2014) Multidimensional prognostic index in a cognitive impairment outpatient setting: Mortality and hospitalizations. The treviso dementia (TREDEM) study. J Alzheimers Dis 42(4):1461–1468. CrossRefGoogle Scholar
  14. 14.
    Gill TM (2012) The central role of prognosis in clinical decision making. JAMA 307(2):199–200. CrossRefGoogle Scholar
  15. 15.
    Harari D, Martin FC, Buttery A, O’Neill S, Hopper A (2007) The older persons’ assessment and liaison team ‘OPAL’: evaluation of comprehensive geriatric assessment in acute medical inpatients. Age Ageing 36(6):670–675. CrossRefGoogle Scholar
  16. 16.
    Hashimoto M, Matsuzaki Y, Kawahara K (2014) Medication-related factors affecting discharge to home. Biol Pharm Bull 37(7):1228–1233CrossRefGoogle Scholar
  17. 17.
    Joob B, Wiwanitkit V (2012) Multidimensional prognostic index and the estimated glomerular filtration rate. Rejuvinated Research. Google Scholar
  18. 18.
    Katz S, Downs TD, Cash HR, Grotz RC (1970) Progress in the development of an index of ADL. Gerontologist 10:20–30CrossRefGoogle Scholar
  19. 19.
    Lawton MP, Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9:179–186CrossRefGoogle Scholar
  20. 20.
    Linn BS, Linn MW, Gurel L (1968) The Cumulative Illness Rating Scale. J Am Geriatr Soc 16:622–626CrossRefGoogle Scholar
  21. 21.
  22. 22.
    MPI_Age (2018) Accessed 2 Mar 2018
  23. 23.
    Paulus W, Schweitzer R, Wiemer S (2010) Klassifikation der Berufe 2010 – Entwicklung und Ergebnis. Methodenbericht der Statistik der BA. BA, NürnbergGoogle Scholar
  24. 24.
    Pfeiffer E (1975) A short portable mental status questionnaire for the assessment of organic brain deficit in elderly patients. J Am Geriatr Soc 23:433–441CrossRefGoogle Scholar
  25. 25.
    Pilotto A, Cella A, Pilotto A, Daragjati J, Veronese N et al (2016) Three decades of comprehensive geriatric assessment: evidence coming from different healthcare settings and specific clinical conditions. J Am Med Dir Assoc 18(2):192.e1–192.e11. CrossRefGoogle Scholar
  26. 26.
    Sancarlo D, D’Onofrio G, Franceschi M et al (2011) Validation of a modified-Multidimensional Prognostic Index (m-MPI) including the Mini Nutritional Assessment Short-Form (MNA-SF) for the prediction of one-year mortality in hospitalized elderly patients. J Nutr Health Aging 3:169–173CrossRefGoogle Scholar
  27. 27.
    Warnier RM, van Rossum E, van Velthuijsen E, Mulder WJ, Schols JM, Kempen GI (2015) Validity, reliability and feasibility of tools to identify frail older patients in inpatient hospital care: A systematic review. J Nutr Health Aging 20(2):218–230. CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Anna Maria Meyer
    • 1
  • Ingrid Becker
    • 2
  • Giacomo Siri
    • 3
  • Paul Thomas Brinkkötter
    • 4
  • Thomas Benzing
    • 4
  • Alberto Pilotto
    • 5
  • M. Cristina Polidori
    • 1
    Email author
  1. 1.Ageing Clinical Research, Dpt. II for Internal MedicineUniversity Hospital of CologneCologneGermany
  2. 2.Institute of Medical Statistics and Computational BiologyUniversity Hospital of CologneCologneGermany
  3. 3.Scientific Directorate – BiostatisticsE.O. Galliera HospitalGenovaItaly
  4. 4.Nephrology, Rheumatology, Diabetology and Internal Medicine, Dpt. II for Internal MedicineUniversity Hospital of CologneCologneGermany
  5. 5.Department Geriatric Care, Orthogeriatrics and Rehabilitation, Frailty AreaE.O. Galliera HospitalGenovaItaly

Personalised recommendations