Zeitschrift für Gerontologie und Geriatrie

, Volume 51, Issue 2, pp 152–156 | Cite as

Antikörper als Therapieoption bei geriatrischen Patienten

Themenschwerpunkt
  • 53 Downloads

Zusammenfassung

Monoklonale Antikörper kommen bereits für viele Indikationen zum Einsatz. Abseits der Onkologie und der Rheumatologie kommt bei geriatrischen Patienten aktuell nur der Antikörper Denosumab zur regelmäßigen Anwendung. Neben Osteoporose gibt es zahlreiche weitere mögliche Anwendungsbereiche von Antikörpern bei chronischen Erkrankungen und geriatrischen Syndromen. Insbesondere im Zusammenhang mit der Sarkopenie erscheint der Übergang zum „Doping des Älteren“ fließend. Der vorliegende Review gibt einen Überblick über den aktuellen Stand der klinischen Entwicklung und mögliche Optionen für die Zukunft.

Schlüsselwörter

Osteoporose Sarkopenie Demenz Kardiovaskuläre Erkrankungen Infektion 

Antibodies as treatment option in older adults

Abstract

Monoclonal antibodies are already used for many different clinical indications. Besides oncology and rheumatology, denosumab is the only antibody that is currently prescribed in older adults with osteoporosis; however, apart from osteoporosis there might be more possible indications for the use of antibodies in chronic diseases and geriatric syndromes. Particularly, with respect to sarcopenia the transition to “doping for older adults” seems to be fluent. The present review provides an overview on the newest developments and prospective options.

Keywords

Osteoporosis Sarcopenia Dementia Cardiovascular diseases Infection 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

S. Wicklein gibt an, dass kein Interessenkonflikt besteht. M. Gosch hat Vortragshonorare von Amgen und MSD erhalten.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361(8):756–765CrossRefPubMedGoogle Scholar
  2. 2.
    Boonen S, Adachi JD, Man Z, Cummings SR, Lippuner K, Torring O et al (2011) Treatment with denosumab reduces the incidence of new vertebral and hip fractures in postmenopausal women at high risk. J Clin Endocrinol Metab 96(6):1727–1736CrossRefPubMedGoogle Scholar
  3. 3.
    Poole KE, Treece GM, Gee AH, Brown JP, McClung MR, Wang A et al (2015) Denosumab rapidly increases cortical bone in key locations of the femur: a 3D bone mapping study in women with osteoporosis. J Bone Miner Res 30(1):46–54CrossRefPubMedGoogle Scholar
  4. 4.
    Bone HG, Wagman RB, Brandi ML, Brown JP, Chapurlat R, Cummings SR et al (2017) 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol 5(7):513–523CrossRefPubMedGoogle Scholar
  5. 5.
    McClung MR (2016) Cancel the denosumab holiday. Osteoporos Int 27(5):1677–1682CrossRefPubMedGoogle Scholar
  6. 6.
    Adami S, Libanati C, Boonen S, Cummings SR, Ho PR, Wang A et al (2012) Denosumab treatment in postmenopausal women with osteoporosis does not interfere with fracture-healing: results from the FREEDOM trial. J Bone Joint Surg Am 94(23):2113–2119CrossRefPubMedGoogle Scholar
  7. 7.
    Delgado-Calle J, Sato AY, Bellido T (2017) Role and mechanism of action of sclerostin in bone. Bone 96:29–37CrossRefPubMedGoogle Scholar
  8. 8.
    McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A et al (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370(5):412–420CrossRefPubMedGoogle Scholar
  9. 9.
    Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375(16):1532–1543CrossRefPubMedGoogle Scholar
  10. 10.
    Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T et al (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377(15):1417–1427CrossRefPubMedGoogle Scholar
  11. 11.
    Langdahl BL, Libanati C, Crittenden DB, Bolognese MA, Brown JP, Daizadeh NS et al (2017) Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet 390(10102):1585–1594CrossRefPubMedGoogle Scholar
  12. 12.
    online PZ (2017) http://www.pharmazeutische-zeitung.de/index.php?id=70782. Zugegriffen: 17. Aug. 2017
  13. 13.
    McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628):83–90CrossRefPubMedGoogle Scholar
  14. 14.
    Sharma M, Kambadur R, Matthews KG, Somers WG, Devlin GP, Conaglen JV et al (1999) Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol 180(1):1–9CrossRefPubMedGoogle Scholar
  15. 15.
    Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ (2009) Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol, Cell Physiol 296(6):C1258–70CrossRefPubMedGoogle Scholar
  16. 16.
    Morissette MR, Stricker JC, Rosenberg MA, Buranasombati C, Levitan EB, Mittleman MA et al (2009) Effects of myostatin deletion in aging mice. Aging Cell 8(5):573–583CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    White TA, LeBrasseur NK (2014) Myostatin and sarcopenia: opportunities and challenges – a mini-review. Gerontology 60(4):289–293CrossRefPubMedGoogle Scholar
  18. 18.
    Camporez JP, Petersen MC, Abudukadier A, Moreira GV, Jurczak MJ, Friedman G et al (2016) Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc Natl Acad Sci USA 113(8):2212–2217CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wurtzel CN, Gumucio JP, Grekin JA, Khouri RK Jr., Russell AJ, Bedi A et al (2017) Pharmacological inhibition of myostatin protects against skeletal muscle atrophy and weakness after anterior cruciate ligament tear. J Orthop Res 35(11):2499–2505.  https://doi.org/10.1002/jor.23537 CrossRefPubMedGoogle Scholar
  20. 20.
    Latres E, Pangilinan J, Miloscio L, Bauerlein R, Na E, Potocky TB et al (2015) Myostatin blockade with a fully human monoclonal antibody induces muscle hypertrophy and reverses muscle atrophy in young and aged mice. Skelet Muscle 5:34CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA, Recknor CP et al (2015) Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 3(12):948–957CrossRefPubMedGoogle Scholar
  22. 22.
    Woodhouse L, Gandhi R, Warden SJ, Poiraudeau S, Myers SL, Benson CT et al (2016) A phase 2 randomized study investigating the efficacy and safety of myostatin antibody LY2495655 versus placebo in patients undergoing elective total hip arthroplasty. J Frailty Aging 5(1):62–70PubMedGoogle Scholar
  23. 23.
    Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M et al (2016) The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature 537(7618):50–56CrossRefPubMedGoogle Scholar
  24. 24.
    Sabatine MS, Giugliano RP, Pedersen TR (2017) Evolocumab in patients with cardiovascular disease. N Engl J Med 377(8):787–788PubMedGoogle Scholar
  25. 25.
    Descamps OS, Fraass U, Dent R, Marz W, Gouni-Berthold I (2017) Anti-PCSK9 antibodies for hypercholesterolaemia: overview of clinical data and implications for primary care. Int J Clin Pract 71(8).  https://doi.org/10.1111/ijcp.12979. Epub 2017 Jul 27PubMedPubMedCentralGoogle Scholar
  26. 26.
    Ridker PM, Revkin J, Amarenco P, Brunell R, Curto M, Civeira F et al (2017) Cardiovascular efficacy and safety of bococizumab in high-risk patients. N Engl J Med 376(16):1527–1539CrossRefPubMedGoogle Scholar
  27. 27.
    Ridker PM, Hennekens CH, Buring JE, Rifai N (2000) C‑reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342(12):836–843CrossRefPubMedGoogle Scholar
  28. 28.
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131CrossRefPubMedGoogle Scholar
  29. 29.
    Wilcox MH, Gerding DN, Poxton IR, Kelly C, Nathan R, Birch T et al (2017) Bezlotoxumab for prevention of recurrent clostridium difficile infection. N Engl J Med 376(4):305–317CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2017

Authors and Affiliations

  1. 1.Medizinische Klinik 2 – Schwerpunkt Geriatrie, Universitätsklinik für GeriatrieKlinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Campus NürnbergNürnbergDeutschland

Personalised recommendations