Advertisement

Zeitschrift für Gerontologie und Geriatrie

, Volume 52, Issue 1, pp 37–44 | Cite as

Skelettmuskuläre Faktoren, Sarkopenie und Stürze im Alter

  • Daniel SchoeneEmail author
  • Eva Kiesswetter
  • Cornel C. Sieber
  • Ellen Freiberger
Übersichten

Zusammenfassung

Stürze im Alter sind ein wichtiges Gesundheitsproblem mit hoher Inzidenz und schwerwiegenden Konsequenzen für den alten Menschen. Die alternsbezogenen Verluste von Muskelkraft und Muskelmasse und -funktion (Sarkopenie) sind i) Risikofaktoren für Stürze, ii) assoziiert mit der körperlichen Funktionalität und iii) Marker des Gebrechlichkeitssyndroms. Der Muskelfunktion kommt dabei eine größere Rolle zu als der Muskelmasse. Die Operationalisierung der Sarkopenie anhand des Algorithmus der European Working Group on Sarcopenia in Older People (EWGSOP) ist konsistent assoziiert mit dem Sturzereignis. Gezieltes körperliches Training spielt die Schlüsselrolle in der Prävention von Stürzen und der Behandlung von Funktionsverlusten durch Sarkopenie und Gebrechlichkeit. Die kombinierte Supplementierung von Protein und Vitamin D unterstützt die Muskelproteinbiosynthese bei unterversorgten Personen und verbessert Aspekte der körperlichen Funktion.

Schlüsselwörter

Altern Stürze Sarkopenie Skelettmuskel Funktion muskuläre Kraft 

Musculoskeletal factors, sarcopenia and falls in old age

Abstract

Falls in older adults are a major public health problem with a high incidence and severe consequences for the older individual. The age-related loss of muscle strength as well as muscle mass and muscle function (sarcopenia) are i) risk factors for falling, ii) associated with physical function and iii) markers of the frailty syndrome. Muscle function appears to play a bigger role than muscle mass. The operationalization of sarcopenia using the European Working Group on Sarcopenia in Older People (EWGSOP) algorithm is consistently associated with falling events. Structured physical exercise plays the key role in the prevention of falls and the management of functional decline caused by sarcopenia and frailty. The combined supplementation with proteins and vitamin D supports muscle protein synthesis in undersupplied persons and improves aspects of physical function.

Keywords

Aged Accidental falls Sarcopenia Muscle, skeletal Function Muscle Strength 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

D. Schoene, E. Kiesswetter, C.C. Sieber und E. Freiberger geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Almeida CW, Castro CH, Pedreira PG et al (2011) Percentage height of center of mass is associated with the risk of falls among elderly women: a case-control study. Gait Posture 34:208–212CrossRefGoogle Scholar
  2. 2.
    Anderson DE, Quinn E, Parker E et al (2016) Associations of computed tomography-based trunk muscle size and density with balance and falls in older adults. J Gerontol A Biol Sci Med Sci 71:811–816CrossRefGoogle Scholar
  3. 3.
    Bauer JM, Verlaan S, Bautmans I et al (2015) Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc 16:740–747CrossRefGoogle Scholar
  4. 4.
    Bean JF, Leveille SG, Kiely DK et al (2003) A comparison of leg power and leg strength within the InCHIANTI study: Which influences mobility more? J Gerontol A Biol Sci Med Sci 58:728–733CrossRefGoogle Scholar
  5. 5.
    Becker C, Blessing-Kapelke U (2011) Empfehlungspapier für das körperliche Training zur Sturzprävention bei älteren, zu Hause lebenden Menschen. Z Gerontol Geriatr 44:121CrossRefGoogle Scholar
  6. 6.
    Benichou O, Lord SR (2016) Rationale for strengthening muscle to prevent falls and fractures: a review of the evidence. Calcif Tissue Int 98:531–545CrossRefGoogle Scholar
  7. 7.
    Bischoff-Ferrari HA, Orav JE, Kanis JA et al (2015) Comparative performance of current definitions of sarcopenia against the prospective incidence of falls among community-dwelling seniors age 65 and older. Osteoporos Int 26:2793–2802CrossRefGoogle Scholar
  8. 8.
    Bloomfield SA (1997) Changes in musculoskeletal structure and function with prolonged bed rest. Med Sci Sports Exerc 29:197–206CrossRefGoogle Scholar
  9. 9.
    Burd NA, West DW, Moore DR et al (2011) Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 hours after resistance exercise in young men. J Nutr 141:568–573CrossRefGoogle Scholar
  10. 10.
    Burd NA, Gorissen SH, van Loon LJC (2013) Anabolic resistance of muscle protein synthesis with aging. Exerc Sport Sci Rev 41:169–173CrossRefGoogle Scholar
  11. 11.
    Campbell B, Kreider RB, Ziegenfuss T et al (2007) International society of sports nutrition position stand: protein and exercise. J Int Soc Sports Nutr 4:8CrossRefGoogle Scholar
  12. 12.
    Carter ND, Khan KM, Mallinson A et al (2002) Knee extension strength is a significant determinant of static and dynamic balance as well as quality of life in older community-dwelling women with osteoporosis. Gerontology 48:360–368CrossRefGoogle Scholar
  13. 13.
    Casas-Herrero A, Cadore EL, Zambom-Ferraresi F et al (2013) Functional capacity, muscle fat infiltration, power output, and cognitive impairment in institutionalized frail oldest old. Rejuvenation Res 16:396–403CrossRefGoogle Scholar
  14. 14.
    Cawthon PM, Blackwell TL, Cauley J et al (2015) Evaluation of the usefulness of consensus definitions of sarcopenia in older men: results from the observational osteoporotic fractures in men cohort study. J Am Geriatr Soc 63:2247–2259CrossRefGoogle Scholar
  15. 15.
    Cress ME, Meyer M (2003) Maximal voluntary and functional performance needed for independence in adults aged 65 to 97 years. Phys Ther 83:37–48Google Scholar
  16. 16.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39:412–423CrossRefGoogle Scholar
  17. 17.
    De Rekeneire N, Visser M, Peila R et al (2003) Is a fall just a fall: correlates of falling in healthy older persons. The health, aging and body composition study. J Am Geriatr Soc 51:841–846CrossRefGoogle Scholar
  18. 18.
    Deandrea S, Lucenteforte E, Bravi F et al (2010) Review article: risk factors for falls in community-dwelling older people: a systematic review and meta-analysis. Epidemiology 21:658–668CrossRefGoogle Scholar
  19. 19.
    Doherty TJ (2003) Invited review: aging and sarcopenia. J Appl Physiol 95:1717–1727CrossRefGoogle Scholar
  20. 20.
    Faber MJ, Bosscher RJ, Chin APMJ et al (2006) Effects of exercise programs on falls and mobility in frail and pre-frail older adults: a multicenter randomized controlled trial. Arch Phys Med Rehabil 87:885–896CrossRefGoogle Scholar
  21. 21.
    Fiatarone MA, Marks EC, Ryan ND et al (1990) High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA 263:3029–3034CrossRefGoogle Scholar
  22. 22.
    Fielding RA, Vellas B, Evans WJ et al (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12:249–256CrossRefGoogle Scholar
  23. 23.
    Freiberger E, Menz HB (2006) Characteristics of falls in physically active community-dwelling older people. Z Gerontol Geriatr 39:261–267CrossRefGoogle Scholar
  24. 24.
    Fried LP, Tangen CM, Walston J et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146–M156CrossRefGoogle Scholar
  25. 25.
    Fritz S, Lusardi M (2009) White paper: “walking speed: the sixth vital sign”. J Geriatr Phys Ther 32:46–49CrossRefGoogle Scholar
  26. 26.
    Gill TM, Allore H, Guo Z (2004) The deleterious effects of bed rest among community-living older persons. J Gerontol A Biol Sci Med Sci 59:755–761CrossRefGoogle Scholar
  27. 27.
    Gill TM, Gahbauer EA, Allore HG et al (2006) Transitions between frailty states among community-living older persons. Arch Intern Med 166:418–423CrossRefGoogle Scholar
  28. 28.
    Gillespie LD, Robertson MC, Gillespie WJ et al (2012) Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. doi: 10.1002/14651858.cd007146.pub3 Google Scholar
  29. 29.
    Harvey JA, Chastin SF, Skelton DA (2015) How sedentary are older people? A systematic review of the amount of sedentary behavior. J Aging Phys Act 23:471–487CrossRefGoogle Scholar
  30. 30.
    Horlings CG, Van Engelen BG, Allum JH et al (2008) A weak balance: the contribution of muscle weakness to postural instability and falls. Nature clinical practice. Neurology 4:504–515Google Scholar
  31. 31.
    Iannuzzi-Sucich M, Prestwood KM, Kenny AM (2002) Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J Gerontol A Biol Sci Med Sci 57:M772–M777CrossRefGoogle Scholar
  32. 32.
    Ip EH, Church T, Marshall SA et al (2013) Physical activity increases gains in and prevents loss of physical function: results from the lifestyle interventions and independence for elders pilot study. J Gerontol A Biol Sci Med Sci 68:426–432CrossRefGoogle Scholar
  33. 33.
    Kelsey JL, Berry SD, Procter-Gray E et al (2010) Indoor and outdoor falls in older adults are different: the MOBILIZE Boston study. J Am Geriatr Soc 58:2135–2141CrossRefGoogle Scholar
  34. 34.
    Kelsey JL, Procter-Gray E, Hannan MT et al (2012) Heterogeneity of falls among older adults: implications for public health prevention. Am J Public Health 102:2149–2156CrossRefGoogle Scholar
  35. 35.
    Kemmler W, Teschler M, Goisser S et al (2015) Prevalence of sarcopenia in Germany and the corresponding effect of osteoarthritis in females 70 years and older living in the community: results of the FORMoSA study. Clin Interv Aging 10:1565–1573CrossRefGoogle Scholar
  36. 36.
    Kiesswetter E (2015) Optimierte Ernährung bei Sarkopenie. Ars Med 2015:6–11Google Scholar
  37. 37.
    Kojima G (2015) Frailty as a predictor of future falls among community-dwelling older people: a systematic review and meta-analysis. J Am Med Dir Assoc 16:1027–1033CrossRefGoogle Scholar
  38. 38.
    Kortebein P, Ferrando A, Lombeida J et al (2007) EFfect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA 297:1769–1774CrossRefGoogle Scholar
  39. 39.
    Krug S, Jordan S, Mensink GBM et al (2013) Körperliche Aktivität Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 56:765–771CrossRefGoogle Scholar
  40. 40.
    Kyrdalen IL, Moen K, Røysland AS et al (2014) The Otago exercise program performed as group training versus home training in fall-prone older people: a randomized controlled trial. Physiother Res Int 19:108–116CrossRefGoogle Scholar
  41. 41.
    Landi F, Calvani R, Cesari M et al (2015) Sarcopenia as the biological substrate of physical frailty. Clin Geriatr Med 31:367–374CrossRefGoogle Scholar
  42. 42.
    Lang T, Streeper T, Cawthon P et al (2010) Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int 21:543–559CrossRefGoogle Scholar
  43. 43.
    Lexell J, Taylor CC, Sjöström M (1988) What is the cause of the ageing atrophy?: Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84:275–294CrossRefGoogle Scholar
  44. 44.
    Leung KS, Li CY, Tse YK et al (2014) Effects of 18-month low-magnitude high-frequency vibration on fall rate and fracture risks in 710 community elderly – a cluster-randomized controlled trial. Osteoporos Int 25:1785–1795CrossRefGoogle Scholar
  45. 45.
    Looker AC, Wang CY (2015) Prevalence of reduced muscle strength in older U.S. adults: United States, 2011–2012. NCHS data brief (179):1–8Google Scholar
  46. 46.
    Lord SR, Clark RD, Webster IW (1991) Postural stability and associated physiological factors in a population of aged persons. J Gerontol 46:M69–M76CrossRefGoogle Scholar
  47. 47.
    Machado A, García-López D, Gonzaléz-Gallego J et al (2010) Whole-body vibration training increases muscle strength and mass in older women: a randomized-controlled trial. Scand J Med Sci Sports 20:200–207CrossRefGoogle Scholar
  48. 48.
    Maki BE, Mcilroy WE (2006) Control of rapid limb movements for balance recovery: age-related changes and implications for fall prevention. Age Ageing 35(Suppl 2):ii12–ii18CrossRefGoogle Scholar
  49. 49.
    Matsumoto H, Hagino H, Sageshima H et al (2015) Diagnosis of knee osteoarthritis and gait variability increases risk of falling for osteoporotic older adults: the GAINA study. Osteoporos Sarcopenia 1:46–52CrossRefGoogle Scholar
  50. 50.
    Menant JC, Weber F, Lo J et al (2016) Strength measures are better than muscle mass measures in predicting health-related outcomes in older people: time to abandon the term sarcopenia? Osteoporos Int 28(1):59–70. doi: 10.1007/s00198-016-3691-7 CrossRefGoogle Scholar
  51. 51.
    Montero-Odasso M, Schapira M, Soriano ER et al (2005) Gait velocity as a single predictor of adverse events in healthy seniors aged 75 years and older. J Gerontol A Biol Sci Med Sci 60:1304–1309CrossRefGoogle Scholar
  52. 52.
    Moreland JD, Richardson JA, Goldsmith CH et al (2004) Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 52:1121–1129CrossRefGoogle Scholar
  53. 53.
    Morley JE, Vellas B, Van Kan GA et al (2013) Frailty consensus: a call to action. J Am Med Dir Assoc 14:392–397CrossRefGoogle Scholar
  54. 54.
    Nair KS (2005) Aging muscle. Am J Clin Nutr 81:953–963CrossRefGoogle Scholar
  55. 55.
    Okubo Y, Schoene D, Lord SR (2016) Step training improves reaction time, gait and balance and reduces falls in older people: a systematic review and meta-analysis. Br J Sports Med 51(7):586–593. doi: 10.1136/bjsports-2015-095452 CrossRefGoogle Scholar
  56. 56.
    Panel on Prevention of Falls in Older Persons, American Geriatrics Society and British Geriatrics Society (2011) Summary of the updated American Geriatrics Society/British Geriatrics Society clinical practice guideline for prevention of falls in older persons. J Am Geriatr Soc 59:148–157CrossRefGoogle Scholar
  57. 57.
    Pereira CL, Baptista F, Infante P (2013) Men older than 50 yrs are more likely to fall than women under similar conditions of health, body composition, and balance. Am J Phys Med Rehabil 92:1095–1103CrossRefGoogle Scholar
  58. 58.
    Quach L, Galica AM, Jones RN et al (2011) The nonlinear relationship between gait speed and falls: the maintenance of balance, independent living, intellect, and zest in the Elderly of Boston study. J Am Geriatr Soc 59:1069–1073CrossRefGoogle Scholar
  59. 59.
    Reid KF, Fielding RA (2012) Skeletal muscle power: a critical determinant of physical functioning in older adults. Exerc Sport Sci Rev 40:4–12CrossRefGoogle Scholar
  60. 60.
    Rubenstein LZ, Josephson KR (2002) The epidemiology of falls and syncope. Clin Geriatr Med 18:141–158CrossRefGoogle Scholar
  61. 61.
    Sherrington C, Michaleff ZA, Fairhall N et al (2016) Exercise to prevent falls in older adults: an updated systematic review and meta-analysis. Br J Sports Med. doi: 10.1136/bjsports-2016-096547 Google Scholar
  62. 62.
    Skelton DA, Kennedy J, Rutherford OM (2002) Explosive power and asymmetry in leg muscle function in frequent fallers and non-fallers aged over 65. Age Ageing 31:119–125CrossRefGoogle Scholar
  63. 63.
    Spira D, Norman K, Nikolov J et al (2016) Prevalence and definition of sarcopenia in community dwelling older people. Data from the Berlin aging study II (BASE-II). Z Gerontol Geriatr 49:94–99CrossRefGoogle Scholar
  64. 64.
    Steib S, Schoene D, Pfeifer K (2010) Dose-response relationship of resistance training in older adults: a meta-analysis. Med Sci Sports Exerc 42:902–914CrossRefGoogle Scholar
  65. 65.
    Stewart VH, Saunders DH, Greig CA (2014) Responsiveness of muscle size and strength to physical training in very elderly people: a systematic review. Scand J Med Sci Sports 24:e1–e10CrossRefGoogle Scholar
  66. 66.
    Szulc P, Beck TJ, Marchand F et al (2005) Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men – the MINOS study. J Bone Miner Res 20:721–729CrossRefGoogle Scholar
  67. 67.
    Szulc P, Feyt C, Chapurlat R (2016) High risk of fall, poor physical function, and low grip strength in men with fracture-the STRAMBO study. J Cachexia Sarcopenia Muscle 7:299–311CrossRefGoogle Scholar
  68. 68.
    Taylor HL, Jacobs DR Jr, Schucker B et al (1978) A questionnaire for the assessment of leisure time physical activities. J Chronic Dis 31:741–755CrossRefGoogle Scholar
  69. 69.
    Thomas S, Mackintosh S, Halbert J (2010) Does the ‘Otago exercise programme’ reduce mortality and falls in older adults?: a systematic review and meta-analysis. Age Ageing 39:681–687CrossRefGoogle Scholar
  70. 70.
    Tiedemann A, Shimada H, Sherrington C et al (2008) The comparative ability of eight functional mobility tests for predicting falls in community-dwelling older people. Age Ageing 37:430–435CrossRefGoogle Scholar
  71. 71.
    Van Puyenbroeck K, Roelandts L, Van Deun T et al (2012) The additional value of bioelectrical impedance analysis-derived muscle mass as a screening tool in geriatric assessment for fall prevention. Gerontology 58:407–412CrossRefGoogle Scholar
  72. 72.
    Viccaro LJ, Perera S, Studenski SA (2011) Is timed up and go better than gait speed in predicting health, function, and falls in older adults? J Am Geriatr Soc 59:887–892CrossRefGoogle Scholar
  73. 73.
    Wolfe RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84:475–482CrossRefGoogle Scholar
  74. 74.
    Wu G (1998) The relation between age-related changes in neuromusculoskeletal system and dynamic postural responses to balance disturbance. J Gerontol A Biol Sci Med Sci 53:M320–M326CrossRefGoogle Scholar
  75. 75.
    Young A, Skelton DA (1994) Applied physiology of strength and power in old age. Int J Sports Med 15:149–151CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  • Daniel Schoene
    • 1
    Email author
  • Eva Kiesswetter
    • 1
  • Cornel C. Sieber
    • 1
    • 2
  • Ellen Freiberger
    • 1
  1. 1.Institut für Biomedizin des AlternsFriedrich-Alexander-Universität Erlangen-NürnbergNürnbergDeutschland
  2. 2.Klinik für Allgemeine Innere Medizin und GeriatrieKrankenhaus Barmherzige BrüderRegensburgDeutschland

Personalised recommendations