Advertisement

Zeitschrift für Gerontologie und Geriatrie

, Volume 50, Issue 6, pp 483–487 | Cite as

Effect of uphill and downhill walking on walking performance in geriatric patients using a wheeled walker

  • Ulrich LindemannEmail author
  • Michael Schwenk
  • Syn Schmitt
  • Michael Weyrich
  • Wolfgang Schlicht
  • Clemens Becker
Original Contribution

Abstract

Background

Wheeled walkers are recommended to improve walking performance in older persons and to encourage and assist participation in daily life. Nevertheless, using a wheeled walker can cause serious problems in the natural environment. This study aimed to compare uphill and downhill walking with walking level in geriatric patients using a wheeled walker. Furthermore, we investigated the effect of using a wheeled walker with respect to dual tasking when walking level.

Methods

A total of 20 geriatric patients (median age 84.5 years) walked 10 m at their habitual pace along a level surface, uphill and downhill, with and without a standard wheeled walker. Gait speed, stride length and cadence were assessed by wearable sensors and the walk ratio was calculated.

Results

When using a wheeled walker while walking level the walk ratio improved (0.58 m/[steps/min] versus 0.57 m/[steps/min], p = 0.023) but gait speed decreased (1.07 m/s versus 1.12 m/s, p = 0.020) when compared to not using a wheeled walker. With respect to the walk ratio, uphill and downhill walking with a wheeled walker decreased walking performance when compared to level walking (0.54 m/[steps/min] versus 0.58 m/[steps/min], p = 0.023 and 0.55 m/[steps/min] versus 0.58 m/[steps/min], p = 0.001, respectively). At the same time, gait speed decreased (0.079 m/s versus 1.07 m/s, p < 0.0001) or was unaffected.

Conclusion

The use of a wheeled walker improved the quality of level walking but the performance of uphill and downhill walking was worse compared to walking level when using a wheeled walker.

Keywords

Downhill walking Uphill walking Geriatric patients Wheeled walker Walk ratio 

Effekt von Bergauf- und Bergabgehen auf die Gehfähigkeit geriatrischer Patienten mit Rollator

Zusammenfassung

Hintergrund

Rollatoren werden im Alter zur Stabilisierung des Gangbildes und zur Verbesserung der Teilhabe genutzt. Der Gebrauch von Rollatoren kann aber auch zu erheblichen Problemen führen, wenn die Umgebungspassung nicht gegeben ist. Das Gangbild geriatrischer Patienten mit Rollator beim Bergauf- und Bergabgehen sollte mit dem Gangbild in der Ebene verglichen werden. Weiterhin sollte der Effekt der Nutzung eines Rollators unter dem Aspekt der geteilten Aufmerksamkeit in der Ebene untersucht werden.

Methoden

Zwanzig geriatrische Patienten (mittleres Alter: 84,5 Jahre) gingen mit und ohne Rollator 10 m auf einer ebenen Strecke, bergauf und bergab. Dabei wurden Gehgeschwindigkeit, Schreitlänge und Schrittfrequenz mit am Körper getragenen Sensoren gemessen. Aus Schreitlänge und Schrittfrequenz wurde die Walk-Ratio berechnet.

Ergebnisse

Verglichen mit Gehen ohne Rollator verbesserte der Gebrauch eines Rollators die Walk-Ratio (0,58 m/[Schritte/min] vs. 0,57 m/[Schritte/min]; p = 0,023), wohingegen die Gehgeschwindigkeit mit Rollator reduziert war (1,07 m/s vs. 1,12 m/s; p = 0,020). Beim Bergauf- und Bergabgehen mit Rollator war die Walk-Ratio schlechter als beim Gehen mit Rollator in der Ebene (0,54 m/[Schritte/min] vs. 0,58 m/[Schritte/min]; p = 0,023 und 0,55 m/[Schritte/min] vs. 0,58 m/[Schritte/min]; p = 0,001). Gleichzeitig war die Gehgeschwindigkeit beim Bergaufgehen langsamer im Vergleich zur Ebene (0,079 m/s vs. 1,07 m/s; p < 0,0001) und zeigte beim Bergabgehen keinen Effekt.

Schlussfolgerung

Der Gebrauch eines Rollators verbesserte das Gangbild in der Ebene. Dem gegenüber verschlechterte sich das Gangbild beim Gebrauch eines Rollators beim Bergauf- und Bergabgehen verglichen mit dem Gehen in der Ebene mit Rollator.

Schlüsselwörter

Bergabgehen Bergaufgehen Geriatrische Patienten Rollator Walk-Ratio 

Notes

Acknowledgements

The authors thank Aileen Currie for proofreading the manuscript. Data collection was performed by Lukas Bollenbach and Tobias Scharpfenecker. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical guidelines

Conflict of interests

C. Becker has a financial relationship to Lilly company and Bosch company. U. Lindemann, M. Schwenk, Syn Schmitt, M. Weyrich and W. Schlicht declare that they have no competing interests.

Written informed consent was obtained from all individual participants included in the study prior to data collection.

All procedures performed in this study involving human participants were in accordance with the standards of the ethic committee of the local university and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Bateni H, Maki BE (2005) Assistive devices for balance and mobility: benefits, demands, and adverse consequences. Arch Phys Med Rehabil 86(1):134–145CrossRefPubMedGoogle Scholar
  2. 2.
    Bohannon RW (1997) Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing 26:15–19CrossRefPubMedGoogle Scholar
  3. 3.
    Brandt A, Iwarsson S, Stahl A (2003) Satisfaction with rollators among community-living users: a follow-up study. Disabil Rehabil 25(7):343–353. doi: 10.1080/0963828021000058495 CrossRefPubMedGoogle Scholar
  4. 4.
    Bryant MS, Pourmoghaddam A, Thrasher A (2012) Gait changes with walking devices in persons with Parkinson’s disease. Disabil Rehabil Assist Technol 7(2):149–152. doi: 10.3109/17483107.2011.602461 CrossRefPubMedGoogle Scholar
  5. 5.
    Callisaya ML, Blizzard L, McGinley JL, Srikanth VK (2012) Risk of falls in older people during fast-walking – the TASCOG study. Gait Posture 36:510–515. doi: 10.1016/j.gaitpost.2012.05.003 CrossRefPubMedGoogle Scholar
  6. 6.
    Clarke PJ (2014) The role of the built environment and assistive devices for outdoor mobility in later life. J Gerontol B Psychol Sci Soc Sci 69(Suppl 1):8–15. doi: 10.1093/geronb/gbu121 CrossRefGoogle Scholar
  7. 7.
    Graafmans WC, Lips P, Wijlhuizen GJ, Pluijm SM, Bouter LM (2003) Daily physical activity and the use of a walking aid in relation to falls in elderly people in a residential care setting. Z Gerontol Geriatr 36(1):23–28. doi: 10.1007/s00391-003-0143-8 CrossRefPubMedGoogle Scholar
  8. 8.
    Groll DL, To T, Bombardier C, Wright JG (2005) The development of a comorbidity index with physical function as the outcome. J Clin Epidemiol 58:595–602. doi: 10.1016/j.jclinepi.2004.10.018 CrossRefPubMedGoogle Scholar
  9. 9.
    Lindemann U, Schwenk M, Klenk J, Kessler M, Weyrich M, Kurz F, Becker C (2015) Problems of older persons using a wheeled walker. Aging Clin Exp Res. doi: 10.1007/s40520-015-0410-8 Google Scholar
  10. 10.
    Mancini M, King L, Salarian A, Holmstrom L, McNames J, Horak FB (2011) Mobility lab to assess balance and gait with synchronized body-worn sensors. J Bioeng Biomed Sci. doi: 10.4172/2155-9538.S1-007 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Oh-Park M, Holtzer R, Mahoney J, Wang C, Raghavan P, Verghese J (2013) Motor dual-task effect on gait and task of upper limbs in older adults under specific task prioritization: pilot study. Aging Clin Exp Res 25(1):99–106. doi: 10.1007/s40520-013-0014-0 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rentschler AJ, Cooper RA, Blasch B, Boninger ML (2003) Intelligent walkers for the elderly: performance and safety testing of VA-PAMAID robotic walker. J Rehabil Res Dev 40(5):423–431CrossRefPubMedGoogle Scholar
  13. 13.
    Rupp TK, Ehlers W, Karajan N, Günther M, Schmitt S (2015) A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Biomech Model Mechanobiol 14(5):1081–1105. doi: 10.1007/s10237-015-0656-2 CrossRefPubMedGoogle Scholar
  14. 14.
    Salminen A‑L, Brandt A, Samuelsson K, Töytäri O, Malmivaara A (2009) Mobility devices to promote activity and participation: a systematic review. J Rehabil Med 41(9):697–706. doi: 10.2340/16501977-0427 CrossRefPubMedGoogle Scholar
  15. 15.
    Schwenk M, Schmidt M, Pfisterer M, Oster P, Hauer K (2011) Rollator use adversely impacts on assessment of gait and mobility during geriatric rehabilitation. J Rehabil Med 43:424–429. doi: 10.2340/16501977-0791 CrossRefPubMedGoogle Scholar
  16. 16.
    Sekiya N, Nagasaki H (1998) Reproducibility of the walking patterns of normal young adults: test-retest reliability of the walk ratio(step-length/step-rate). Gait Posture 7:225–227CrossRefPubMedGoogle Scholar
  17. 17.
    Suica Z, Romkes J, Tal A, Maguire C (2016) Walking with a four wheeled walker (rollator) significantly reduces EMG lower-limb muscle activity in healthy subjects. J Bodyw Mov Ther 20(1):65–73. doi: 10.1016/j.jbmt.2015.06.002 CrossRefPubMedGoogle Scholar
  18. 18.
    Thabane L, Ma J, Chu R, Cheng J, Ismaila A, Rios LP, Robson R, Thabane M, Giangregorio L, Goldsmith CH (2010) A tutorial on pilot studies: the what, why and how. BMC Med Res Methodol 10:1CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Umea University (2014) Biotech Umeå - Developing an intelligent rollator. http://www.biotechumea.se/developing-an-intelligent-rollator. Accessed 22 July 2015Google Scholar
  20. 20.
    University of Stuttgart (2015) Institut für Automatisierungs- und Softwaretechnik. http://www.ias.uni-stuttgart.de/?page_id=46&demo_id=18. Accessed 17 July 2015Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ulrich Lindemann
    • 1
    • 2
    Email author
  • Michael Schwenk
    • 1
    • 3
  • Syn Schmitt
    • 2
    • 4
  • Michael Weyrich
    • 2
    • 5
  • Wolfgang Schlicht
    • 2
    • 6
  • Clemens Becker
    • 1
    • 2
  1. 1.Department of Geriatrics and Clinic for Geriatric RehabilitationRobert-Bosch-HospitalStuttgartGermany
  2. 2.Research Initiative Human Factors in Ageing, Technology and EnvironmentUniversity StuttgartStuttgartGermany
  3. 3.Network on Aging ResearchUniversity of HeidelbergHeidelbergGermany
  4. 4.Institute of Sports and Movement ScienceUniversity of StuttgartStuttgartGermany
  5. 5.Institute for Automation and Software EngineeringUniversity of StuttgartStuttgartGermany
  6. 6.Department of Sport and Exercise Science, Chair Exercise and Health SciencesUniversity of StuttgartStuttgartGermany

Personalised recommendations