Zeitschrift für Gerontologie und Geriatrie

, Volume 45, Issue 8, pp 722–727 | Cite as

Smartphone-based solutions for fall detection and prevention: the FARSEEING approach

  • S. MelloneEmail author
  • C. Tacconi
  • L. Schwickert
  • J. Klenk
  • C. Becker
  • L. Chiari
Beiträge zum Themenschwerpunkt


Falls are not an inevitable consequence of aging. The risk and rate of falls can be reduced. Recent improvements in smartphone technology enable implementation of a wide variety of services and applications, thus making the smartphone more of a digital companion than simply a communication tool. This paper presents the results obtained by the FARSEEING project where smartphones are one example of intervention in a population-based scenario. The applications developed take advantage of the smartphone-embedded inertial sensors and require that subjects wear the smartphone by means of a waist belt. The uFall Android application has been developed for monitoring the user’s motor activities at home. The application does not require any direct interaction with the user and it is also capable of running a real-time fall-detection algorithm. uTUG is a stand-alone application for instrumenting the Timed Up and Go test, which is a test often included in fall risk assessment protocols. The application acts like a pocket-sized motion laboratory, since it is capable not only of recording the trial but also of processing the data and immediately displaying the results. uTUG is designed to be self-administrable at home.


Smartphone Fall detection Fall prevention Monitoring Timed Up and Go test 

Smartphonebasierte Lösungen zur Sturzerkennung und -prävention: das FARSEEING-Projekt


Stürze sind keine notwendige Folge des Alterns, sie können verhindert werden. Die jüngsten Entwicklungen der Smartphonetechnologie ermöglichen eine Vielzahl von Anwendungen und Applikationen, wodurch das Gerät nicht nur als Kommunikationswerkzeug, sondern zunehmend als digitaler Alltagsbegleiter dient. In diesem Artikel werden Ergebnisse des FARSEEING-Projekts präsentiert, bei dem Smartphones ein Interventionsbeispiel in einem populationsbezogenen Szenario sind. Die hier vorgestellten Applikationen nutzen die im Gerät integrierten Inertialsensoren. Das Smartphone wird dabei mit einem Hüftgurt getragen. Die uFall-Applikation dient zur innerhäuslichen Beobachtung der körperlichen Aktivität des Nutzers und ermöglicht eine algorithmusbasierte Echtzeitsturzerkennung. Die uTUG-Applikation instrumentalisiert den Timed-up-and-go(TUG)-Test (Zeit bis zum Aufstehen und Gehen), welcher häufig zur Messung des Sturzrisikos verwendet wird. Dieses „miniaturisierte Bewegungslabor“ erlaubt nicht nur die Durchführung einzelner Messungen, sondern stellt auch prozessierte Daten zur direkten Auswertung bereit. Die Applikationen ermöglichen die Eigenanwendung und erfordern keine direkte Interaktion des Nutzers mit dem Gerät.


Smartphone Sturzdetektion Sturzprävention Monitoring Timed-Up-and-Go-Test 



This FARSEEING project is co-funded by the European Commission, Seventh Framework Programme, Cooperation—ICT, Grant Agreement no. 288940.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.


  1. 1.
    Heinrich S, Rapp K, Rissmann U et al (2010) Cost of falls in old age: a systematic review. Osteoporos Int 21(6):891–902PubMedCrossRefGoogle Scholar
  2. 2.
    Tinetti ME, Kumar C (2010) The patient who falls: ‘‘It’s always a trade-off.’’ JAMA 303:258–266Google Scholar
  3. 3.
    Panel on Prevention of Falls in Older Persons, American Geriatrics Society and British Geriatrics Society (2011) Summary of the Updated American Geriatrics Society/British Geriatrics Society clinical practice guideline for prevention of falls in older persons. J Am Geriatr Soc 59(1):148–157CrossRefGoogle Scholar
  4. 4.
    Cesari M, Landi F, Torre S et al (2002) Prevalence and risk factors for falls in an older community-dwelling population. J Gerontol 57A(11):M722–M726Google Scholar
  5. 5.
    Delbaere K, Close JCT, Heim J et al (2010) A multifactorial approach to understanding fall risk in older people. J Am Geriatr Soc 58(9):1679–1685PubMedCrossRefGoogle Scholar
  6. 6.
    Alwan M, Rajendran PJ, Kell S et al (2006) A smart and passive floor-vibration based fall detector for elderly. Conf Proc. of the 2nd ICTTA 1003–1007Google Scholar
  7. 7.
    Popescu M, Li Y, Skubic M, Rantz M (2008) An acoustic fall detector system that uses sound height information to reduce the false alarm rate. Conf Proc 30th IEEE EMBS 4628–4631Google Scholar
  8. 8.
    Lee T, Mihailidis A (2005) An intelligent emergency response system: preliminary development and testing of automated fall detection. J Telemed TeleCare 11(4):194–198PubMedCrossRefGoogle Scholar
  9. 9.
    Bourke AK, Van de Ven P, Gamble M et al (2010) Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities. J Biomech 43:3051–3057PubMedCrossRefGoogle Scholar
  10. 10.
    Bourke AK, Lyons GM (2008) A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Med Eng Phys 30(1):84–90PubMedCrossRefGoogle Scholar
  11. 11.
    Gillespie LD, Gillespie WJ, Robertson MC et al (2009) Interventions for preventing falls in elderly people. Cochrane Database Syst Rev:CD007146Google Scholar
  12. 12.
    Cameron ID, Murray GR, Gillespie LD et al (2010) Interventions for preventing falls in older people in nursing care facilities and hospitals. Cochrane Database Syst Rev:CD005465Google Scholar
  13. 13.
    Consolvo S, McDonald DW, Toscos T et al (2008) Activity sensing in the wild: a field trial of Ubifit garden, Conf Proc 26th ACM SIGCHI Human Factors Comp. Sys 1797–1806Google Scholar
  14. 14.
    Lane ND, Miluzzo E, Hong LU et al (2010) A survey of mobile phone sensing. IEEE Commun Mag 48(9):140–150CrossRefGoogle Scholar
  15. 15.
    Sposaro F, Tyson G (2009) iFall: an Android application for fall monitoring and response. Conf Proc IEEE Eng Med Biol Soc 6119–6122Google Scholar
  16. 16. Accessed June 2012Google Scholar
  17. 17.
    Dai J, Bai X, Yang Z et al (2010) Mobile phone-based pervasive fall detection. J Personal and Ubiquitous Computing 14(7):633–643CrossRefGoogle Scholar
  18. 18.
    Lee RY, Carlisle AJ (2011) Detection of falls using accelerometers and mobile phone technology. Age Ageing 40(6):690–696PubMedCrossRefGoogle Scholar
  19. 19.
    Kangas M, Konttila A, Lindegren P et al (2008) Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 28(2):285–291PubMedCrossRefGoogle Scholar
  20. 20.
    Berg KO, Maki BE, Williams KI (1992) Clinical and laboratory measures of postural balance in an elderly population. Arch Phys Med Rehabil 73:1073–1080PubMedGoogle Scholar
  21. 21.
    Lin M, Hwang H, Hu M et al (2004) Psychometric comparisons of the timed up and go, one-leg stand, functional reach, and tinetti balancemeasures in community-dwelling older people. J Am Geriatr Soc 52:1343–1348PubMedCrossRefGoogle Scholar
  22. 22.
    Weiss A, Herman T, Plotnik M et al (2010) Can an accelerometer enhance the utility of the Timed Up & Go Test when evaluating patients with Parkinson’s disease? Med Eng Phys 32(2):119–125PubMedCrossRefGoogle Scholar
  23. 23.
    Zampieri C, Salarian A, Carlson-Kuhta P et al (2010) The instrumented timed up and go test: potential outcome measure for disease modifying therapies in Parkinson’s disease. J Neurol Neurosurg Psychiatry 81(2):171–176PubMedCrossRefGoogle Scholar
  24. 24.
    Marschollek M, Nemitz G, Gietzelt M et al (2009) Predicting in-patient falls in a geriatric clinic: a clinical study combining assessment data and simple sensory gait measurements. Z Gerontol Geriatr 42(4):317–321PubMedCrossRefGoogle Scholar
  25. 25.
    Mellone S, Tacconi C, Chiari L (2012) Validity of a Smartphone-based instrumented Timed Up and Go. Gait Posture 1(36):163–165CrossRefGoogle Scholar
  26. 26.
    Tacconi C, Mellone S, Chiari L (2011) Smartphone-based applications for investigating falls and mobility, Conf Proc 5th PervasiveHealth 258–261Google Scholar
  27. 27.
    Klenk J, Becker C, Lieken F et al (2011) Comparison of acceleration signals of simulated and real-world backward falls. Med Eng Phys 33(3):368–373PubMedCrossRefGoogle Scholar
  28. 28.
    Bagalà F, Becker C, Cappello A et al (2012) Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLoS ONE 7(5):e37062PubMedCrossRefGoogle Scholar
  29. 29.
    Tacconi C, Mellone S, Chiari L (2012) uTUG: a smartphone application for home‐based TUG testing. Conf Proc 1st Joint World Conference of ISPGR and Gait & Mental Function 329–330Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Mellone
    • 1
    Email author
  • C. Tacconi
    • 1
    • 2
  • L. Schwickert
    • 3
  • J. Klenk
    • 3
    • 4
  • C. Becker
    • 3
  • L. Chiari
    • 1
    • 2
  1. 1.Department of Electronics, Computer Science and SystemsUniversity of BolognaBolognaItaly
  2. 2.Health Sciences and Technologies - Interdepartmental Center for Industrial ResearchUniversity of BolognaBolognaItaly
  3. 3.Department of Clinical GerontologyRobert-Bosch HospitalStuttgartGermany
  4. 4.Institute of Epidemiology and Medical BiometryUlm UniversityUlmGermany

Personalised recommendations