Advertisement

Zeitschrift für Gerontologie und Geriatrie

, Volume 43, Issue 4, pp 229–234 | Cite as

Use of virtual reality technique for the training of motor control in the elderly

Some theoretical considerations
  • E.D. de Bruin
  • D. Schoene
  • G. Pichierri
  • S.T. Smith
Beiträge zum Themenschwerpunkt

Abstract

Virtual augmented exercise, an emerging technology that can help to promote physical activity and combine the strengths of indoor and outdoor exercise, has recently been proposed as having the potential to increase exercise behavior in older adults. By creating a strong presence in a virtual, interactive environment, distraction can be taken to greater levels while maintaining the benefits of indoor exercises which may result in a shift from negative to positive thoughts about exercise. Recent findings on young participants show that virtual reality training enhances mood, thus, increasing enjoyment and energy. For older adults virtual, interactive environments can influence postural control and fall events by stimulating the sensory cues that are responsible in maintaining balance and orientation. However, the potential of virtual reality training has yet to be explored for older adults. This manuscript describes the potential of dance pad training protocols in the elderly and reports on the theoretical rationale of combining physical game-like exercises with sensory and cognitive challenges in a virtual environment.

Keywords

Geriatric adults Vitual reality Virtual environment Physical activity Indoor exercise 

Einsatz der virtuellen Realität für das Training der motorischen Kontrolle bei Älteren

Einige theoretische Überlegungen

Zusammenfassung

Eine durch virtuelle Realität ergänzte Bewegungsausführung stellt eine neue und sich schnell entwickelnde Technologie dar. Sie fördert die Lust zur Bewegung, vereinigt die Vorteile von Indoor- und Outdooraktivitäten und vermag sogar das Bewegungsverhalten von älteren Menschen zu verbessern. Eine starke Ablenkung von der eigentlichen Bewegungsausführung, verursacht durch ein überzeugendes Gefühl des Eintauchens in eine virtuell-interaktive Umgebung, kann dazu führen, dass sich die Meinung über Bewegung vom Negativen zum Positiven hin wendet. Neuste Erkenntnisse mit jungen Personen zeigen, dass das Training in einer virtuellen Umgebung Vergnügen bereitet, die Gemütslage und den Energielevel anhebt. Bei älteren Menschen kann eine virtuell-interaktive Umgebung die Haltungskontrolle beeinflussen und auch als Sturzprophylaxe dienen, in dem sie die sensorischen Bereiche stimuliert, die für die Kontrolle des Gleichgewichts und der Orientierung zuständig sind. Dennoch muss das Potenzial eines Trainings in einer virtuellen Umgebung bei älteren Menschen noch weiter erforscht werden. Dieser Artikel beschreibt die Möglichkeiten eines Einsatzes von elektronischen Tanzmatten bei älteren Menschen und erklärt die theoretischen Hintergründe der Kombination von körperlicher Aktivität mit gleichzeitigen sensorisch-kognitiven Aufgaben in einer virtuellen Umgebung.

Schlüsselwörter

Ältere Menschen Virtuelle Realität Virtuelle Umgebung Körperliche Aktivität Indoorbewegung 

Notes

Conflict of interest

The corresponding author states that there are no conflicts of interest.

References

  1. 1.
    Freedman VA, Martin LG, Schoeni RF (2002) Recent trends in disability and functioning among older adults in the United States: a systematic review. Jama 288:3137–3146CrossRefPubMedGoogle Scholar
  2. 2.
    Gill TM, Kurland B (2003) The burden and patterns of disability in activities of daily living among community-living older persons. J Gerontol A Biol Sci Med Sci 58:70–75PubMedGoogle Scholar
  3. 3.
    Goldspink DF (2005) Ageing and activity: their effects on the functional reserve capacities of the heart and vascular smooth and skeletal muscles. Ergonomics 48:1334–1351CrossRefPubMedGoogle Scholar
  4. 4.
    Pluijm SM, Visser M, Puts MT et al (2007) Unhealthy lifestyles during the life course: association with physical decline in late life. Aging Clin Exp Res 19:75–83PubMedGoogle Scholar
  5. 5.
    Taylor AH, Cable NT, Faulkner G et al (2004) Physical activity and older adults: a review of health benefits and the effectiveness of interventions. J Sports Sci 22:703–725CrossRefPubMedGoogle Scholar
  6. 6.
    Moreland J, Richardson J, Chan DH et al (2003) Evidence-based guidelines for the secondary prevention of falls in older adults. Gerontology 49:93–116CrossRefPubMedGoogle Scholar
  7. 7.
    Hausdorff JM, Edelberg HK, Mitchell SL et al (1997) Increased gait unsteadiness in community-dwelling elderly fallers. Arch Phys Med Rehabil 78:278–283CrossRefPubMedGoogle Scholar
  8. 8.
    Campbell AJ, Borrie MJ, Spears GF (1989) Risk factors for falls in a community-based prospective study of people 70 years and older. J Gerontol 44:M112–117PubMedGoogle Scholar
  9. 9.
    Rubenstein LZ, Robbins AS, Schulman BL et al (1988) Falls and instability in the elderly. J Am Geriatr Soc 36:266–278PubMedGoogle Scholar
  10. 10.
    Yogev-Seligmann G, Hausdorff JM, Giladi N (2008) The role of executive function and attention in gait. Mov Disord 23:329–342; quiz 472CrossRefPubMedGoogle Scholar
  11. 11.
    Laessoe U, Hoeck HC, Simonsen O, Voigt M (2008) Residual attentional capacity amongst young and elderly during dual and triple task walking. Hum Mov Sci 27:496–512CrossRefPubMedGoogle Scholar
  12. 12.
    Alexander NB, Hausdorff JM (2008) Guest editorial: linking thinking, walking, and falling. J Gerontol A Biol Sci Med Sci 63:1325–1328PubMedGoogle Scholar
  13. 13.
    Mahncke HW, Bronstone A, Merzenich MM (2006) Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog Brain Res 157:81–109CrossRefPubMedGoogle Scholar
  14. 14.
    Alexander NB (1996) Gait disorders in older adults. J Am Geriatr Soc 44:434–451PubMedGoogle Scholar
  15. 15.
    Sauvage LR Jr, Myklebust BM, Crow-Pan J et al (1992) A clinical trial of strengthening and aerobic exercise to improve gait and balance in elderly male nursing home residents. Am J Phys Med Rehabil 71:333–342CrossRefPubMedGoogle Scholar
  16. 16.
    Mian OS, Baltzopoulos V, Minetti AE, Narici MV (2007) The impact of physical training on locomotor function in older people. Sports Med 37:683–701CrossRefPubMedGoogle Scholar
  17. 17.
    Hausdorff JM, Rios DA, Edelberg HK (2001) Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil 82:1050–1056CrossRefPubMedGoogle Scholar
  18. 18.
    Skelton DA, Beyer N (2003) Exercise and injury prevention in older people. Scand J Med Sci Sports 13:77–85CrossRefPubMedGoogle Scholar
  19. 19.
    Studer M (2007) Rehabilitation of executive function: to err is human, to be aware-divine. J Neurol Phys Ther 31:128–134PubMedGoogle Scholar
  20. 20.
    Hogan M (2005) Physical and cognitive activity and exercise for older adults: a review. Int J Aging Hum Dev 60:95–126CrossRefPubMedGoogle Scholar
  21. 21.
    Rosano C, Aizenstein H, Brach J et al (2008) Special article: gait measures indicate underlying focal gray matter atrophy in the brain of older adults. J Gerontol A Biol Sci Med Sci 63:1380–1388PubMedGoogle Scholar
  22. 22.
    Rapport LJ, Hanks RA, Millis SR, Deshpande SA (1998) Executive functioning and predictors of falls in the rehabilitation setting. Arch Phys Med Rehabil 79:629–633CrossRefPubMedGoogle Scholar
  23. 23.
    Yan JH, Zhou CL (2009) Effects of motor practice on cognitive disorders in older adults. Eur Rev Aging Phys Act 6:67–74CrossRefGoogle Scholar
  24. 24.
    Cicerone K, Levin H, Malec J et al (2006) Cognitive rehabilitation interventions for executive function: moving from bench to bedside in patients with traumatic brain injury. J Cogn Neurosci 18:1212–1222CrossRefPubMedGoogle Scholar
  25. 25.
    Adamovich SV, Fluet GG, Tunik E, Merians AS (2009) Sensorimotor training in virtual reality: a review. NeuroRehabilitation 25:29–44PubMedGoogle Scholar
  26. 26.
    Van Schaik P, Blake J, Pernet F et al (2008) Virtual augmented exercise gaming for older adults. Cyberpsychol Behav 11:103–106CrossRefGoogle Scholar
  27. 27.
    Zelinski EM, Reyes R (2009) Cognitive benefits of computer games for older adults. Gerontechnology 2009;8:220–235Google Scholar
  28. 28.
    Kizony R, Raz L, Katz N et al (2005) Video-capture virtual reality system for patients with paraplegic spinal cord injury. J Rehabil Res Dev 42:595–608CrossRefPubMedGoogle Scholar
  29. 29.
    Holden M, Todorov E (2002) Use of virtual environments in motor learning and rehabilitation. In: Stanney K (ed) Handbook of virtual environments: design, implementation, and applications. Mahwah, NJ, Erlbaum, pp 999–1026Google Scholar
  30. 30.
    Sanchez-Vives MV, Slater M (2005) From presence to consciousness through virtual reality. Nat Rev Neurosci 6:332–339CrossRefPubMedGoogle Scholar
  31. 31.
    Holden MK (2005) Virtual environments for motor rehabilitation: review. Cyberpsychol Behav 8:187–211; discussion 212–189CrossRefPubMedGoogle Scholar
  32. 32.
    Plante T, Aldridge A, Bogden R, Hanelin C (2003) Might virtual reality promote the mood benefits of exercise? Computers in Human Behavior 19:495–509CrossRefGoogle Scholar
  33. 33.
    Grealy MA, Johnson DA, Rushton SK (1999) Improving cognitive function after brain injury: the use of exercise and virtual reality. Arch Phys Med Rehabil 80:661–667CrossRefPubMedGoogle Scholar
  34. 34.
    Virk S, McConville KM (2006) Virtual reality applications in improving postural control and minimizing falls. Conf Proc IEEE Eng Med Biol Soc 1:2694–2697CrossRefPubMedGoogle Scholar
  35. 35.
    Brumels KA, Blasius T, Cortright T et al (2008) Comparison of efficacy between traditional and video game based balance programs. Clinical Kinesiology: Journal of the American Kinesiotherapy Association 62:26–31Google Scholar
  36. 36.
    Merians AS, Poizner H, Boian R et al (2006) Sensorimotor training in a virtual reality environment: Does it improve functional recovery poststroke? Neurorehabil Neural Repair 20:252–267CrossRefPubMedGoogle Scholar
  37. 37.
    Bisson E, Contant B, Sveistrup H, Lajoie Y (2007) Functional balance and dual-task reaction times in older adults are improved by virtual reality and biofeedback training. Cyberpsychol Behav 10:16–23CrossRefPubMedGoogle Scholar
  38. 38.
    Cross ES, Kraemer DJ, Hamilton AF et al (2009) Sensitivity of the action observation network to physical and observational learning. Cereb Cortex 19:315–326CrossRefPubMedGoogle Scholar
  39. 39.
    You SH, Jang SH, Kim YH et al (2005) Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: An experimenter-blind randomized study. Stroke 36:1166–1171CrossRefPubMedGoogle Scholar
  40. 40.
    Tseng SC, Stanhope SJ, Morton SM (2010) Visuomotor adaptation of voluntary step initiation in older adults. Gait Posture 31:180–184CrossRefPubMedGoogle Scholar
  41. 41.
    Shumway-Cook A, Woollacott MH (1995) Motor control: theory and practical applications. Baltimore, Williams & WilkinsGoogle Scholar
  42. 42.
    Lord SR, Fitzpatrick RC (2001) Choice stepping reaction time: a composite measure of falls risk in older people. J Gerontol A Biol Sci Med Sci 56:M627–632PubMedGoogle Scholar
  43. 43.
    McIlroy WE, Maki BE (1996) Age-related changes in compensatory stepping in response to unpredictable perturbations. J Gerontol A Biol Sci Med Sci 51:M289–296PubMedGoogle Scholar
  44. 44.
    Maki BE, Edmondstone MA, McIlroy WE (2000) Age-related differences in laterally directed compensatory stepping behavior. J Gerontol A Biol Sci Med Sci 55:M270–277PubMedGoogle Scholar
  45. 45.
    Jobges M, Heuschkel G, Pretzel C et al (2004) Repetitive training of compensatory steps: A therapeutic approach for postural instability in Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:1682–1687CrossRefPubMedGoogle Scholar
  46. 46.
    Rogers MW, Johnson ME, Martinez KM et al (2003) Step training improves the speed of voluntary step initiation in aging. J Gerontol A Biol Sci Med Sci 58:46–51PubMedGoogle Scholar
  47. 47.
    Pai YC, Bhatt TS (2007) Repeated-slip training: an emerging paradigm for prevention of slip-related falls among older adults. Phys Ther 87:1478–1491CrossRefPubMedGoogle Scholar
  48. 48.
    Mansfield A, Peters AL, Liu BA, Maki BE (2007) A perturbation-based balance training program for older adults: study protocol for a randomised controlled trial. BMC Geriatr 7:12CrossRefPubMedGoogle Scholar
  49. 49.
    Shimada H, Obuchi S, Furuna T, Suzuki T (2004) New intervention program for preventing falls among frail elderly people: the effects of perturbed walking exercise using a bilateral separated treadmill. Am J Phys Med Rehabil 83:493–499CrossRefPubMedGoogle Scholar
  50. 50.
    Smith ST, Sherrington C, Studenski S et al (2009) A novel dance dance revolution (ddr) system for in-home training of stepping ability: basic parameters of system use by older adults. Br J Sports MedGoogle Scholar
  51. 51.
    Bruin ED de, Dörflinger M, Reith A, Murer K (2010) The effect of dance dance revolution gaming compared to conventional physical training on dual task walking costs in elderly. Parkinsonism relat disord 16 (Suppl 1): 59Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • E.D. de Bruin
    • 1
  • D. Schoene
    • 2
  • G. Pichierri
    • 1
  • S.T. Smith
    • 2
  1. 1.Inst. f. Bewegungswissenschaften u. SportZürichSchweiz
  2. 2.Neuroscience Research AustraliaSydneyAustralia

Personalised recommendations