Zeitschrift für Gerontologie und Geriatrie

, Volume 40, Issue 5, pp 349–356 | Cite as

Advanced glycation end products, diabetes and ageing

  • N. Nass
  • B. Bartling
  • A. Navarrete Santos
  • R. J. Scheubel
  • J. Börgermann
  • R. E. Silber
  • A. Simm


Advanced glycation end products (AGEs) are formed in vivo by a non-enzymatic reaction of proteins with carbohydrates and accumulate in many tissues during ageing. They are discussed as being responsible for many age- and diabetes-related diseases. On the other hand, AGEs are formed by the heating of food and are taken up by the nutrition. The contribution of endogenously formed versus exogenous intake of AGEs to age-related diseases is still under discussion.

Key words

advanced glycation endproducts degenerative diseases cell signalling 

Fortgeschrittene Glykierungsendprodukte, Diabetes und Altern


Fortgeschrittene Glykierungsendprodukte (AGEs) werden in vivo durch eine nicht-enzymatische chemische Reaktion von Proteinen mit Kohlenhydraten gebildet und reichern sich in vielen Geweben mit dem Alter an. Sie werden für die Auslösung von alters- und Diabetes-induzierten Erkrankungen mitverantwortlich gemacht. Andererseits entstehen AGEs durch die Erhitzung von Lebensmitteln, die mit der Nahrung aufgenommen werden. Inwieweit nun endogene oder exogen-aufgenommene AGEs die größere Rolle bei der Entstehung von degenerativen Erkrankungen ist noch nicht geklärt.


Glykierungsendprodukte Degenerative Erkrankungen Signaltransduktion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oeppen J, Vaupel JW (2002) Demography. Broken limits to life expectancy. Science 296:1029–1031PubMedCrossRefGoogle Scholar
  2. 2.
    Olshansky SJ, Passaro DJ, Hershow RC, Layden J, Carnes BA, Brody J, Hayflick L, Butler RN, Allison DB, Ludwig DS (2005) A potential decline in life expectancy in the United States in the 21st century. N Engl J Med 352:1138–1145PubMedCrossRefGoogle Scholar
  3. 3.
    Daniels SR (2006) The consequences of childhood overweight and obesity. Future Child 16:47–67PubMedCrossRefGoogle Scholar
  4. 4.
    Bunn HF, Higgins PJ (1981) Reaction of monosaccharides with proteins: possible evolutionary significance. Science 213:222–224PubMedCrossRefGoogle Scholar
  5. 5.
    Lo TW, Westwood ME, McLellan AC, Selwood T, Thornalley PJ (1994) Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alphaacetyllysine, and bovine serum albumin. J Biol Chem 269:32299–32305PubMedGoogle Scholar
  6. 6.
    Ferreira AE, Ponces Freire AM, Voit EO (2003) A quantitative model of the generation of N(epsilon)-(carboxymethyl) lysine in the Maillard reaction between collagen and glucose. Biochem J 376:109–121PubMedCrossRefGoogle Scholar
  7. 7.
    Glomb MA, Monnier VM (1995) Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem 270:10017–10026PubMedCrossRefGoogle Scholar
  8. 8.
    Namiki M (2003) Advances in the Maillard reaction and glycation researches – mainly on the Namiki pathway. Seikagaku 75:37–42PubMedGoogle Scholar
  9. 9.
    Sato T, Iwaki M, Shimogaito N, Wu X, Yamagishi S, Takeuchi M (2006) TAGE (toxic AGEs) theory in diabetic complications. Curr Mol Med 6:351–358PubMedCrossRefGoogle Scholar
  10. 10.
    Sato T, Shimogaito N, Wu X, Kikuchi S, Yamagishi S, Takeuchi M (2006) Toxic advanced glycation end products (TAGE) theory in Alzheimer's disease. Am J Alzheimers Dis Other Demen 21:197–208PubMedCrossRefGoogle Scholar
  11. 11.
    Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H (1997) Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA 94:6474–6479PubMedCrossRefGoogle Scholar
  12. 12.
    Somoza V (2007) The maillard reaction in food and medicine. Mol Nutr Food Res 51:381–382PubMedCrossRefGoogle Scholar
  13. 13.
    Ahmed N, Thornalley PJ (2005) Peptide mapping of human serum albumin modified minimally by methylglyoxal in vitro and in vivo. Ann NY Acad Sci 1043:260–266PubMedCrossRefGoogle Scholar
  14. 14.
    Zeng J, Davies MJ (2005) Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins. Chem Res Toxicol 18:1232–1241PubMedCrossRefGoogle Scholar
  15. 15.
    Friguet B, Stadtman ER, Szweda LI (1994) Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Formation of crosslinked protein that inhibits the multicatalytic protease. J Biol Chem 269:21639–21643PubMedGoogle Scholar
  16. 16.
    Bulteau AL, Verbeke P, Petropoulos I, Chaffotte AF, Friguet B (2001) Proteasome inhibition in glyoxal-treated fibroblasts and resistance of glycated glucose-6-phosphate dehydrogenase to 20 S proteasome degradation in vitro. J Biol Chem 276:45662–45668PubMedCrossRefGoogle Scholar
  17. 17.
    Badenhorst D, Maseko M, Tsotetsi OJ, Naidoo A, Brooksbank R, Norton GR, Woodiwiss AJ (2003) Cross-linking influences the impact of quantitative changes in myocardial collagen on cardiac stiffness and remodelling in hypertension in rats. Cardiovasc Res 57:632–641PubMedCrossRefGoogle Scholar
  18. 18.
    Yao D, Taguchi T, Matsumura T, Pestell R, Edelstein D, Giardino I, Suske G, Ahmed N, Thornalley PJ, Sarthy VP et al (2006) Methylglyoxal modification of mSin3A links glycolysis to angiopoietin-2 transcription. Cell 124:275–286PubMedCrossRefGoogle Scholar
  19. 19.
    Hernebring M, Brolen G, Aguilaniu H, Semb H, Nystrom T (2006) Elimination of damaged proteins during differentiation of embryonic stem cells. Proc Natl Acad Sci USA 103:7700–7705PubMedCrossRefGoogle Scholar
  20. 20.
    Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83:876–886PubMedCrossRefGoogle Scholar
  21. 21.
    Westwood ME, McLellan AC, Thornalley PJ (1994) Receptor-mediated endocytic uptake of methylglyoxal-modified serum albumin. Competition with advanced glycation end product-modified serum albumin at the advanced glycation end product receptor. J Biol Chem 269:32293–32298PubMedGoogle Scholar
  22. 22.
    Kuniyasu A, Ohgami N, Hayashi S, Miyazaki A, Horiuchi S, Nakayama H (2003) CD36-mediated endocytic uptake of advanced glycation end products (AGE) in mouse 3T3-L1 and human subcutaneous adipocytes. FEBS Lett 537:85–90PubMedCrossRefGoogle Scholar
  23. 23.
    Li YM, Mitsuhashi T, Wojciechowicz D, Shimizu N, Li J, Stitt A, He C, Banerjee D, Vlassara H (1996) Molecular identity and cellular distribution of advanced glycation endproduct receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins. Proc Natl Acad Sci USA 93:11047–11052PubMedCrossRefGoogle Scholar
  24. 24.
    Hodgkinson CP, Mander A, Sale GJ (2005) Identification of 80K-H as a protein involved in GLUT4 vesicle trafficking. Biochem J 388:785–793PubMedCrossRefGoogle Scholar
  25. 25.
    Fukushi J, Makagiansar IT, Stallcup WB (2004) NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell 15:3580–3590PubMedCrossRefGoogle Scholar
  26. 26.
    Gaudin JC, Mehul B, Hughes RC (2000) Nuclear localisation of wild type and mutant galectin-3 in transfected cells. Biol Cell 92:49–58PubMedCrossRefGoogle Scholar
  27. 27.
    Iacobini C, Amadio L, Oddi G, Ricci C, Barsotti P, Missori S, Sorcini M, Di Mario U, Pricci F, Pugliese G (2003) Role of galectin-3 in diabetic nephropathy. J Am Soc Nephrol 14: S264–270PubMedCrossRefGoogle Scholar
  28. 28.
    Schleicher ED, Wagner E, Nerlich AG (1997) Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J Clin Invest 99:457–468PubMedGoogle Scholar
  29. 29.
    Simm A, Wagner J, Gursinsky T, Nass N, Friedrich I, Schinzel R, Czeslik E, Silber RE, Scheubel RJ (2007) Advanced glycation endproducts: a biomarker for age as an outcome predictor after cardiac surgery? Exp Gerontol 42:668–675PubMedCrossRefGoogle Scholar
  30. 30.
    Dyer DG, Dunn JA, Thorpe SR, Lyons TJ, McCance DR, Baynes JW (1992) Accumulation of Maillard reaction products in skin collagen in diabetes and aging. Ann NY Acad Sci 663:421–422PubMedCrossRefGoogle Scholar
  31. 31.
    Verzijl N, DeGroot J, Oldehinkel E, Bank RA, Thorpe SR, Baynes JW, Bayliss MT, Bijlsma JW, Lafeber FP, Tekoppele JM (2000) Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem J 350 Pt 2:381–387PubMedCrossRefGoogle Scholar
  32. 32.
    Sato Y, Kondo T, Ohshima T (2001) Estimation of age of human cadavers by immunohistochemical assessment of advanced glycation end products in the hippocampus. Histopathology 38:217–220PubMedCrossRefGoogle Scholar
  33. 33.
    Sell DR, Kleinman NR, Monnier VM (2000) Longitudinal determination of skin collagen glycation and glycoxidation rates predicts early death in C57BL/6NNIA mice. Faseb J 14:145–156PubMedGoogle Scholar
  34. 34.
    Sebekova K, Hofmann T, Boor P, Sebekova K Jr, Ulicna O, Erbersdobler HF, Baynes JW, Thorpe SR, Heidland A, Somoza V (2005) Renal effects of oral maillard reaction product load in the form of bread crusts in healthy and subtotally nephrectomized rats. Ann NY Acad Sci 1043:482–491PubMedCrossRefGoogle Scholar
  35. 35.
    Stitt AW, Curtis TM (2005) Advanced glycation and retinal pathology during diabetes. Pharmacol Rep 57 (Suppl):156–168PubMedGoogle Scholar
  36. 36.
    Brownlee M, Vlassara H, Cerami A (1985) Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes 34:938–941PubMedCrossRefGoogle Scholar
  37. 37.
    Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ Jr, Chow WS, Stern D, Schmidt AM (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 4:1025–1031PubMedCrossRefGoogle Scholar
  38. 38.
    Vlassara H, Fuh H, Donnelly T, Cybulsky M (1995) Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits. Mol Med 1:447–456PubMedGoogle Scholar
  39. 39.
    Koyama H, Shoji T, Yokoyama H, Motoyama K, Mori K, Fukumoto S, Emoto M, Tamei H, Matsuki H, Sakurai S et al (2005) Plasma level of endogenous secretory RAGE is associated with components of the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 25:2587–2593PubMedCrossRefGoogle Scholar
  40. 40.
    Koyama H, Shoji T, Fukumoto S, Shinohara K, Emoto M, Mori K, Tahara H, Ishimura E, Kakiya R, Tabata T et al (2006) Low circulating endogenous secretory receptor for AGEs predicts cardiovascular mortality in patients with end-stage renal disease. Arterioscler Thromb Vasc Biol 27:147–153PubMedCrossRefGoogle Scholar
  41. 41.
    Wautier JL, Zoukourian C, Chappey O, Wautier MP, Guillausseau PJ, Cao R, Hori O, Stern D, Schmidt AM (1996) Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest 97:238–243PubMedGoogle Scholar
  42. 42.
    Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D (1995) Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 96:1395–1403PubMedGoogle Scholar
  43. 43.
    Wang AL, Yu AC, He QH, Zhu X, Tso MO (2007) AGEs mediated expression and secretion of TNF alpha in rat retinal microglia. Exp Eye Res 84:905–913PubMedCrossRefGoogle Scholar
  44. 44.
    Shanmugam N, Kim YS, Lanting L, Natarajan R (2003) Regulation of cyclooxygenase-2 expression in monocytes by ligation of the receptor for advanced glycation end products. J Biol Chem 278:34834–34844PubMedCrossRefGoogle Scholar
  45. 45.
    Veiga da-Cunha M, Jacquemin P, Delpierre G, Godfraind C, Theate I, Vertommen D, Clotman F, Lemaigre F, Devuyst O, Van Schaftingen E (2006) Increased protein glycation in fructosamine 3-kinase-deficient mice. Biochem J 399:257–264PubMedCrossRefGoogle Scholar
  46. 46.
    Thornalley PJ (1998) Glutathione-dependent detoxification of alpha-oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity of glyoxalase I inhibitors. Chem Biol Interact 111–112:137–151PubMedCrossRefGoogle Scholar
  47. 47.
    Thornalley PJ (1995) Advances in glyoxalase research. Glyoxalase expression in malignancy, anti-proliferative effects of methylglyoxal, glyoxalase I inhibitor diesters and SD-lactoylglutathione, and methylglyoxal-modified protein binding and endocytosis by the advanced glycation endproduct receptor. Crit Rev Oncol Hematol 20:99–128PubMedCrossRefGoogle Scholar
  48. 48.
    Levi B, Werman MJ (1998) Long-term fructose consumption accelerates glycation and several age-related variables in male rats. J Nutr 128:1442–1449PubMedGoogle Scholar
  49. 49.
    Gaby AR (2005) Adverse effects of dietary fructose. Altern Med Rev 10:294–306PubMedGoogle Scholar
  50. 50.
    Somoza V (2005) Five years of research on health risks and benefits of Maillard reaction products: an update. Mol Nutr Food Res 49:663–672PubMedCrossRefGoogle Scholar
  51. 51.
    Somoza V, Wenzel E, Weiss C, Clawin-Radecker I, Grubel N, Erbersdobler HF (2006) Dose-dependent utilisation of casein-linked lysinoalanine, N(epsilon)-fructoselysine and N (epsilon)-carboxymethyllysine in rats. Mol Nutr Food Res 50:833–841PubMedCrossRefGoogle Scholar
  52. 52.
    Ames JM, Wynne A, Hofmann A, Plos S, Gibson GR (1999) The effect of a model melanoidin mixture on faecal bacterial populations in vitro. Br J Nutr 82:489–495PubMedGoogle Scholar
  53. 53.
    Grunwald S, Krause R, Bruch M, Henle T, Brandsch M (2006) Transepithelial flux of early and advanced glycation compounds across Caco-2 cell monolayers and their interaction with intestinal amino acid and peptide transport systems. Br J Nutr 95:1221–1228PubMedCrossRefGoogle Scholar
  54. 54.
    Li SY, Liu Y, Sigmon VK, McCort A, Ren J (2005) High-fat diet enhances visceral advanced glycation end products, nuclear O-Glc-Nac modification, p38 mitogen-activated protein kinase activation and apoptosis. Diabetes Obes Metab 7:448–454PubMedCrossRefGoogle Scholar
  55. 55.
    Hofmann MA, Lalla E, Lu Y, Gleason MR, Wolf BM, Tanji N, Ferran LJ Jr, Kohl B, Rao V, Kisiel W et al (2001) Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest 107:675–683PubMedCrossRefGoogle Scholar
  56. 56.
    Faist V, Lindenmeier M, Geisler C, Erbersdobler HF, Hofmann T (2002) Influence of molecular weight fractions isolated from roasted malt on the enzyme activities of NADPH-cytochrome c-reductase and glutathione-S-transferase in Caco-2 cells. J Agric Food Chem 50:602–606PubMedCrossRefGoogle Scholar
  57. 57.
    Esposito C, Fasoli G, Plati AR, Bellotti N, Conte MM, Cornacchia F, Foschi A, Mazzullo T, Semeraro L, Dal Canton A (2001) Long-term exposure to high glucose up-regulates VCAM-induced endothelial cell adhesiveness to PBMC. Kidney Int 59:1842–1849PubMedCrossRefGoogle Scholar
  58. 58.
    Zill H, Bek S, Hofmann T, Huber J, Frank O, Lindenmeier M,Weigle B, Erbersdobler HF, Scheidler S, Busch AE et al (2003) RAGE-mediated MAPK activation by food-derived AGE and non-AGE products. Biochem Biophys Res Commun 300:311–315PubMedCrossRefGoogle Scholar
  59. 59.
    Zill H, Gunther R, Erbersdobler HF, Folsch UR, Faist V (2001) RAGE expression and AGE-induced MAP kinase activation in Caco-2 cells. Biochem Biophys Res Commun 288:1108–1111PubMedCrossRefGoogle Scholar
  60. 60.
    Mizutani K, Ikeda K, Kawai Y, Yamori Y (1998) Resveratrol stimulates the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun 253:859–863PubMedCrossRefGoogle Scholar
  61. 61.
    Mizutani K, Ikeda K, Nishikata T, Yamori Y (2000) Phytoestrogens attenuate oxidative DNA damage in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. J Hypertens 18:1833–1840PubMedCrossRefGoogle Scholar
  62. 62.
    Reddy VP, Beyaz A (2006) Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discov Today 11:646–654PubMedCrossRefGoogle Scholar
  63. 63.
    Stadler K, Jenei V, Somogyi A, Jakus J (2005) Beneficial effects of aminoguanidine on the cardiovascular system of diabetic rats. Diabetes Metab Res Rev 21:189–196PubMedCrossRefGoogle Scholar
  64. 64.
    Bolton WK, Cattran DC, Williams ME, Adler SG, Appel GB, Cartwright K, Foiles PG, Freedman BI, Raskin P, Ratner RE et al (2004) Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol 24:32–40PubMedCrossRefGoogle Scholar
  65. 65.
    Asif M, Egan J, Vasan S, Jyothirmayi GN, Masurekar MR, Lopez S, Williams C, Torres RL, Wagle D, Ulrich P et al (2000) An advanced glycation endproduct cross-link breaker can reverse age-related increases in myocardial stiffness. Proc Natl Acad Sci USA 97:2809–2813PubMedCrossRefGoogle Scholar
  66. 66.
    Wolffenbuttel BH, Boulanger CM, Crijns FR, Huijberts MS, Poitevin P, Swennen GN, Vasan S, Egan JJ, Ulrich P, Cerami A et al (1998) Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proc Natl Acad Sci USA 95:4630–4634PubMedCrossRefGoogle Scholar
  67. 67.
    Little WC, Zile MR, Kitzman DW, Hundley WG, O'Brien TX, Degroof RC (2005) The effect of alagebrium chloride (ALT-711), a novel glucose cross-link breaker, in the treatment of elderly patients with diastolic heart failure. J Card Fail 11:191–195PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff-Verlag 2007

Authors and Affiliations

  • N. Nass
    • 1
  • B. Bartling
    • 1
  • A. Navarrete Santos
    • 1
  • R. J. Scheubel
    • 1
  • J. Börgermann
    • 1
  • R. E. Silber
    • 1
  • A. Simm
    • 1
  1. 1.Klinik für Herz- und ThoraxchirurgieMartin-Luther-Universität Halle-WittenbergHalleGermany

Personalised recommendations