Intensivmedizin und Notfallmedizin

, Volume 48, Issue 2, pp 99–108 | Cite as

Monitoring der künstlichen Ernährung bei kritisch kranken Patienten

Leitthema
  • 245 Downloads

Zusammenfassung

Jede Form der künstlichen Ernährung ist mit Komplikationen verbunden, die jedoch durch regelmäßige Effizienzkontrollen minimiert werden können. Bei kritisch Kranken kann die Einschätzung des Ernährungszustands sonographisch (Muskelmasse) oder mittels Subjective Global Assessment (SGA) erfolgen. Bei enteraler Ernährung ist die Aspiration eine gefürchtete Komplikation. Zur Minimierung des Risikos gehört die Überwachung der gastrointestinalen Motilität, die häufig gestört ist und dadurch eine bedarfsgerechte Ernährung verhindert wird. Daher muss die Menge der zugeführten bzw. mutmaßlich resorbierten Kalorien engmaschig überwacht werden. Unter parenteraler Ernährung können Hyperglykämien und Hypertriglyzeridämien exazerbieren; hier sind die Blutzucker- und Triglyzeridkonzentrationen engmaschig zu überwachen. Weiterhin kann sich eine Fettleber entwickeln, evt. in Verbindung mit biliären Komplikationen, welche sich durch Bestimmung der hepatischen Funktionsparameter im Plasma erkennen lassen. Patienten mit Nierenfunktionsstörungen bzw. ausgeprägten Volumenverschiebungen benötigen zusätzlich engmaschige Kontrollen der Elektrolytkonzentrationen, der Vitalfunktionen, des Hydratationszustandes sowie der Nierenfunktion.

Schlüsselwörter

Künstliche Ernährung Parenterale Ernährung Enterale Ernährung Komplikationen Monitoring 

Monitoring nutritional support in critically ill patients

Abstract

Independent from its type or mode, artificial nutrition may cause complications. In critical illness, it may be particularly difficult to evaluate the nutritional status of an individual patient. Accepting some degree of imprecision, muscle ultrasound and subjective global assessment may be valuable tools. During enteral nutrition, aspiration is the complication feared the most. To minimize corresponding risks, it is important to closely monitor gastrointestinal function which is likely to be impaired, thereby, often preventing the provision of sufficient calories. To account for potential deficits, a close monitoring of actually administered or presumably absorbed calories is essential. During parenteral nutrition, the risk is high that hyperglycemia or hypertriglyceridemia will exacerbate. Consequently, corresponding concentrations need to be closely monitored. Further complications include generation of a fatty liver, or biliary pathologies. The latter can be recognized by regularly determining plasmatic parameters of hepatic function. In patients with impaired kidney function or large volume shifts, close surveillance of electrolyte concentrations, vital function, hydration state, and kidney function is essential.

Keywords

Nutritional support Parenteral nutrition Enteral nutrition Complications Monitoring 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Payne-James J (1997) Cost-effectiveness of nutrition support teams. Are they necessary? Nutrition 13:928–930PubMedGoogle Scholar
  2. 2.
    A.S.P.E.N Board of Directors (2001) Standards of practice: Nutrition support nurse. Nutr Clin Pract 16:56–62Google Scholar
  3. 3.
    Klein S, Kinney J, Jeejeebhoy K et al (1997) Nutrition support in clinical practice: review of published data and recommendations for future research directions. JPEN J Parenter Enteral Nutr 21:133–156PubMedGoogle Scholar
  4. 4.
    A.S.P.E.N Board of Directors (1996) Standards for nutrition support physicians. Nutr Clin Pract 11:235–240Google Scholar
  5. 5.
    Lochs H, Pichard C, Allison SP (2006) Evidence supports nutritional support. Clin Nutr 25:177–179PubMedGoogle Scholar
  6. 6.
    Darmon P, Lochs H, Pichard C (2008) Economic impact and quality of life as endpoints of nutritional therapy. Curr Opin Clin Nutr Metab Care 11(4):452–458PubMedGoogle Scholar
  7. 7.
    Bischoff SC, Kester L, Meier R et al (2009) Organisation, regulations, preparation and logistics of parenteral nutrition in hospitals and homes; the role of the nutrition support team – Guidelines on Parenteral Nutrition, Chapter 8. Ger Med Sci 7:Doc20PubMedGoogle Scholar
  8. 8.
    A.S.P.E.N Board of Directors and The Clinical Guidelines Task Force (2001) Guidelines for the use of parenteral and enteral nutrition in adult and pediatric patients. JPEN J Parenter Enteral Nutr 26:38SA–41SAGoogle Scholar
  9. 9.
    MacBurney M, Young LS, Ziegler TR, Wilmore DW (1994) A cost-evaluation of glutamine-supplemented parenteral nutrition in adult bone marrow transplant patients. J Am Diet Assoc 94:1263–1266PubMedGoogle Scholar
  10. 10.
    Senkal M, Zumtobel V, Bauer KH et al (1999) Outcome and cost-effectiveness of perioperative enteral immunonutrition in patients undergoing elective upper gastrointestinal tract surgery: a prospective randomized study. Arch Surg 134:1309–1316PubMedGoogle Scholar
  11. 11.
    Hedberg AM, Lairson DR, Aday LA et al (1999) Economic implications of an early postoperative enteral feeding protocol. J Am Diet Assoc 99:802–807PubMedGoogle Scholar
  12. 12.
    Boitano M, Bojak S, McCloskey S et al (2010) Improving the safety and effectiveness of parenteral nutrition: results of a quality improvement collaboration. Nutr Clin Pract 25(6):663–671PubMedGoogle Scholar
  13. 13.
    Trujillo EB, Young LS, Chertow GM et al (1999) Metabolic and monetary costs of avoidable parenteral nutrition use. JPEN J Parenter Enteral Nutr 23:109–113PubMedGoogle Scholar
  14. 14.
    Maurer J, Weinbaum F, Turner J et al (1996) Reducing the inappropriate use of parenteral nutrition in an acute care teaching hospital. JPEN J Parenter Enteral Nutr 20:272–274PubMedGoogle Scholar
  15. 15.
    Kennedy JF, Nightingale JM (2005) Cost savings of an adult hospital nutrition support team. Nutrition 21:1127–1133PubMedGoogle Scholar
  16. 16.
    Manning EM, Shenkin A (1995) Nutritional assessment in the critically ill. Crit Care Clin 11:603–634PubMedGoogle Scholar
  17. 17.
    Jeejeebhoy KN (2000) Nutritional assessment. Nutrition 16:585–590PubMedGoogle Scholar
  18. 18.
    Müller MJ, Bosy-Westphal A (2000) Körperzusammensetzung – Definition und Methoden. Akt Ernahr Med 25:60–63Google Scholar
  19. 19.
    Pirlich M, Schwenk A, Müller MJ (2003) Leitlinie enterale Ernährung: Ernährungsstatus. Akt Ernahr Med 28(Suppl 1):S10–S25Google Scholar
  20. 20.
    Ferreira LG, Anastácio LR, Lima AS, Correia MI (2010) Assessment of nutritional status of patients waiting for liver transplantation. Clin Transplant [Epub ahead of print]Google Scholar
  21. 21.
    Pirlich M, Plauth M, Lochs H (1999) Bioelektrische Impedanzanalyse: Fehlerquellen und methodische Grenzen bei der klinischen Anwendung zur Analyse der Körperzusammensetzung. Akt Ernahr Med 24:81–90Google Scholar
  22. 22.
    Norman K, Smoliner C, Kilbert A et al (2008) Disease-related malnutrition but not underweight by BMI is reflected by disturbed electric tissue properties in the bioelectrical impedance vector analysis. Br J Nutr 100(3):590–595PubMedGoogle Scholar
  23. 23.
    Van Venrooij LM, Verberne HJ, Vos R de et al (2010) Preoperative and postoperative agreement in fat free mass (FFM) between bioelectrical impedance spectroscopy (BIS) and dual-energy X-ray absorptiometry (DXA) in patients undergoing cardiac surgery. Clin Nutr 29(6):789–794Google Scholar
  24. 24.
    Campbell IT, Watt T, Withers D et al (1995) Muscle thickness, measured with ultrasound, may be an indicator of lean tissue wasting in multiple organ failure in the presence of edema. Am J Clin Nutr 62(3):533–539PubMedGoogle Scholar
  25. 25.
    Reid CL, Campbell IT, Little RA (2004) Muscle wasting and energy balance in critical illness. Clin Nutr 23(2):273–280PubMedGoogle Scholar
  26. 26.
    Gerovasili V, Stefanidis K, Vitzilaios K et al (2009) Electrical muscle stimulation preserves the muscle mass of critically ill patients: a randomized study. Crit Care 13(5):R161PubMedGoogle Scholar
  27. 27.
    Baker JP, Detsky AS, Wesson DE et al (1982) Nutritional assessment: a comparison of clinical judgement and objective measurements. N Engl J Med 306:969–972PubMedGoogle Scholar
  28. 28.
    Sheean PM, Peterson SJ, Gurka DP, Braunschweig CA (2010) Nutrition assessment: the reproducibility of subjective global assessment in patients requiring mechanical ventilation. Eur J Clin Nutr 64(11):1358–1364PubMedGoogle Scholar
  29. 29.
    Sungurtekin H, Sungurtekin U, Oner O, Okke D (2008–2009) Nutrition assessment in critically ill patients. Nutr Clin Pract 23(6):635–641PubMedGoogle Scholar
  30. 30.
    Atalay BG, Yagmur C, Nursal TZ et al (2008) Use of subjective global assessment and clinical outcomes in critically ill geriatric patients receiving nutrition support. JPEN J Parenter Enteral Nutr 32(4):454–459PubMedGoogle Scholar
  31. 31.
    Martindale RG, McClave SA, Vanek VW et al (2009) Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: Executive Summary. Crit Care Med 37(5):1757–1761PubMedGoogle Scholar
  32. 32.
    Ukleja A (2010) Altered Gi Motility in Critically Ill Patients: Current Understanding of Pathophysiology, Clinical Impact, and Diagnostic Approach. Nutr Clin Pract 25:16–25PubMedGoogle Scholar
  33. 33.
    Fruhwald S, Holzer P, Metzler H (2008) Gastrointestinal motility in acute illness. Wien Klin Wochenschr 120:6–17PubMedGoogle Scholar
  34. 34.
    López-Herce J (2009) Gastrointestinal complications in critically Ill patients: what differs between adults and children? Curr Opin Clin Nutr Metab Care 12(2):180–185PubMedGoogle Scholar
  35. 35.
    Gomes GF, Pisani JC, Macedo ED, Campos AC (2003) The nasogastric feeding tube as a risk factor for aspiration and aspiration pneumonia. Curr Opin Clin Nutr Metab Care 6(3):327–333PubMedGoogle Scholar
  36. 36.
    McClave SA, DeMeo MT, DeLegge MH et al (2002) North American Summit on Aspiration in the Critically Ill Patient: consensus statement. JPEN J Parenter Enteral Nutr 26(6 Suppl):S80–S85PubMedGoogle Scholar
  37. 37.
    O’Keefe GE, Shelton M, Cuschieri J et al (2008) Inflammation and the host response to injury, a large-scale collaborative project: patient-oriented research core – standard operating procedures for clinical care VIII – Nutritional support of the trauma patient. J Trauma 65(6):1520–1528Google Scholar
  38. 38.
    Bankhead R, Boullata J, Brantley S et al (2009) Enteral nutrition practice recommendations. JPEN J Parenter Enteral Nutr 33(2):122–167PubMedGoogle Scholar
  39. 39.
    McClave SA, Snider HL, Lowen CC et al (1992) Use of residual volume as a marker for enteral feeding intolerance: prospective blinded comparison with physical examination and radiographic findings. JPEN J Parenter Enteral Nutr 16(2):99–105PubMedGoogle Scholar
  40. 40.
    Landzinski J, Kiser TH, Fish DN et al (2008) Gastric motility function in critically ill patients tolerant vs intolerant to gastric nutrition. JPEN J Parenter Enteral Nutr 32(1):45–50PubMedGoogle Scholar
  41. 41.
    Metheny NA, Stewart J, Nuetzel G et al (2005) Effect of feeding-tube properties on residual volume measurements in tube-fed patients. JPEN J Parenter Enteral Nutr 29(3):192–197PubMedGoogle Scholar
  42. 42.
    McClave SA, Snider HL (2002) Clinical use of gastric residual volumes as a monitor for patients on enteral tube feeding. JPEN J Parenter Enteral Nutr 26(6 Suppl):S43–S48PubMedGoogle Scholar
  43. 43.
    Heyland DK, Dhaliwal R, Drover JW et al (2003) Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr 27(5):355–373PubMedGoogle Scholar
  44. 44.
    Montejo JC, Miñambres E, Bordejé L et al (2010) Gastric residual volume during enteral nutrition in ICU patients: the REGANE study. Intensive Care Med 36(8):1386–1393PubMedGoogle Scholar
  45. 45.
    McClave SA, Lukan JK, Stefater JA et al (2005) Poor validity of residual volumes as a marker for risk of aspiration in critically ill patients. Crit Care Med 33(2):324–330PubMedGoogle Scholar
  46. 46.
    Pinilla JC, Samphire J, Arnold C et al (2001) Comparison of gastrointestinal tolerance to two enteral feeding protocols in critically ill patients: a prospective, randomized controlled trial. JPEN J Parenter Enteral Nutr 25(2):81–86PubMedGoogle Scholar
  47. 47.
    Desachy A, Clavel M, Vuagnat A et al (2008) Initial efficacy and tolerability of early enteral nutrition with immediate or gradual introduction in intubated patients. Intensive Care Med 34(6):1054–1059PubMedGoogle Scholar
  48. 48.
    Metheny NA, Schallom L, Oliver DA, Clouse RE (2008) Gastric residual volume and aspiration in critically ill patients receiving gastric feedings. Am J Crit Care 17(6):512–519PubMedGoogle Scholar
  49. 49.
    Elpern EH, Stutz L, Peterson S et al (2004) Outcomes associated with enteral tube feedings in a medical intensive care unit. Am J Crit Care 13(3):221–227PubMedGoogle Scholar
  50. 50.
    Umbrello M, Elia G, Destrebecq AL, Iapichino G (2009) Tolerance of enteral feeding: from quantity to quality of gastric residual volume? Intensive Care Med 35(9):1651–1652PubMedGoogle Scholar
  51. 51.
    Mentec H, Dupont H, Bocchetti M et al (2001) Upper digestive intolerance during enteral nutrition in critically ill patients: frequency, risk factors, and complications. Crit Care Med 29(10):1955–1961PubMedGoogle Scholar
  52. 52.
    Metheny NA, Clouse RE, Chang YH et al (2006) Tracheobronchial aspiration of gastric contents in critically ill tube-fed patients: frequency, outcomes, and risk factors. Crit Care Med 34(4):1007–1015PubMedGoogle Scholar
  53. 53.
    Poulard F, Dimet J, Martin-Lefevre L et al (2010) Impact of not measuring residual gastric volume in mechanically ventilated patients receiving early enteral feeding: a prospective before-after study. JPEN J Parenter Enteral Nutr 34(2):125–130PubMedGoogle Scholar
  54. 54.
    Jeejeebhoy KN (2001) Total parenteral nutrition: potion or poison? Am J Clin Nutr 74:160–163PubMedGoogle Scholar
  55. 55.
    Lekka ME, Liokatis S, Nathanail C et al (2004) The impact of intravenous fat emulsion administration in acute lung injury. Am J Respir Crit Care Med 169:638–4PubMedGoogle Scholar
  56. 56.
    Tripathy D, Mohanty P, Dhindsa S et al (2003) Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 52:2882–2887PubMedGoogle Scholar
  57. 57.
    Llop J et al (2003) The importance of clinical factors in parenteral nutrition-associated hypertriglyceridemia. Clin Nutr 22:577–583PubMedGoogle Scholar
  58. 58.
    Hermansen K, Dinesen B, Hoie LH et al (2003) Effects of soy and other natural products on LDL:HDL ratio and other lipid parameters: a literature review. Adv Ther 20:50–78PubMedGoogle Scholar
  59. 59.
    Gura K, Strijbosch R, Arnold S et al (2007) The role of an intravenous fat emulsion composed of fish oil in a parenteral nutrition-dependent patient with hypertriglyceridemia. Nutr Clin Pract 22(6):664–672PubMedGoogle Scholar
  60. 60.
    Suchner U, Katz DP, Furst P et al (2001) Effects of intravenous fat emulsions on lung function in patients with acute respiratory distress syndrome or sepsis. Crit Care Med 29:1569–1574PubMedGoogle Scholar
  61. 61.
    Smyrniotis VE, Kostopanagiotou GG, Arkadopoulos NF et al (2001) Long-chain versus medium-chain lipids in acute pancreatitis complicated by acute respiratory distress syndrome: effects on pulmonary hemodynamics and gas exchange. Clin Nutr 20:139–143PubMedGoogle Scholar
  62. 62.
    Waitzberg DL, Lotierzo PH, Logullo AF et al (2002) Parenteral lipid emulsions and phagocytic systems. Br J Nutr 87(Suppl 1):S49–S57PubMedGoogle Scholar
  63. 63.
    Calder PC (2003) Long-chain n-3 fatty acids and inflammation: potential application in surgical and trauma patients. Braz J Med Biol Res 36:433–446PubMedGoogle Scholar
  64. 64.
    Mayer K, Fegbeutel C, Hattar K et al (2003) Omega-3 vs. omega-6 lipid emulsions exert differential influence on neutrophils in septic shock patients: impact on plasma fatty acids and lipid mediator generation. Intensive Care Med 29:1472–1481PubMedGoogle Scholar
  65. 65.
    Tsuang W, Navaneethan U, Ruiz L et al (2009) Hypertriglyceridemic pancreatitis: presentation and management. Am J Gastroenterol 104(4):984–991PubMedGoogle Scholar
  66. 66.
    Ewald N, Hardt PD, Kloer HU (2009) Severe hypertriglyceridemia and pancreatitis: presentation and management. Curr Opin Lipidol 20(6):497–504PubMedGoogle Scholar
  67. 67.
    Hartl W, Jauch KW, Parhofer K, Rittler P (2007) Komplikationen und Monitoring. Akt Ernähr Med 32(Suppl 1):S60–S68Google Scholar
  68. 68.
    Alberti KG, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group (2005) The metabolic syndrome – a new worldwide definition. Lancet 366(9491):1059–1062PubMedGoogle Scholar
  69. 69.
    Grundy SM, Brewer HB Jr, Cleeman JI et al (2004) Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109(3):433–438PubMedGoogle Scholar
  70. 70.
    Rydén L, Standl E, Bartnik M et al (2007) Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur Heart J 28(1):88–136PubMedGoogle Scholar
  71. 71.
    Van den Berghe G, Wouters P, Weekers F et al (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345(19):1359–1367Google Scholar
  72. 72.
    Mesotten D, Swinnen JV, Vanderhoydonc F et al (2004) Contribution of circulating lipids to the improved outcome of critical illness by glycemic control with intensive insulin therapy. J Clin Endocrinol Metab 89(1):219–226PubMedGoogle Scholar
  73. 73.
    Schetz M, Vanhorebeek I, Wouters PJ et al (2008) Tight blood glucose control is renoprotective in critically ill patients. J Am Soc Nephrol 19(3):571–578PubMedGoogle Scholar
  74. 74.
    Mirtallo JM, Dasta JF, Kleinschmidt KC, Varon J (2010) State of the art review: Intravenous fat emulsions: Current applications, safety profile, and clinical implications. Ann Pharmacother 44(4):688–700PubMedGoogle Scholar
  75. 75.
    Finney SJ, Zekveld C, Elia A, Evans TW (2003) Glucose control and mortality in critically ill patients. JAMA 290:2041–2047PubMedGoogle Scholar
  76. 76.
    Malmberg K (1997) Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. BMJ 314:1512PubMedGoogle Scholar
  77. 77.
    Meier JJ et al (2002) Einfluss einer eingeschränkten Glukosetoleranz auf das Langzeitüberleben nach akutem Myokardinfarkt. DMW 127:1123–1129Google Scholar
  78. 78.
    Norhammer AM et al (1999) Admission plasma glucose. Independent risk factor for long-term prognosis after myocardial infarction even in nondiabetic patients. Diabetes Care 22:1827–1831Google Scholar
  79. 79.
    Parsons MW et al (2002) Acute hyperglycemia adversely affects stroke outcome: a magnetic resonance imaging and spectroscopy study. Ann Neurol 52:20–28PubMedGoogle Scholar
  80. 80.
    Umpierrez GE et al (2002) Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrin Metab 87:978–982Google Scholar
  81. 81.
    Weir CJ et al (1997) Is hyperglycaemia an independent predictor or poor outcome after acute stroke? Results of a long term follow up study. BMJ 314:1303PubMedGoogle Scholar
  82. 82.
    Zindrou D et al (2001) Admission Plasma glucose. An independent risk factor in nondiabetic women after coronary artery bypass grafting. Diabetes Care 24:1634–1639PubMedGoogle Scholar
  83. 83.
    Rosmarin DK, Wardlaw GM, Mirtallo J (1996) Hyperglycemia associated with high, continuous infusion rates of total parenteral nutrition dextrose. Nutr Clin Pract 11:151–156PubMedGoogle Scholar
  84. 84.
    Kaminski MV Jr (1978) A review of hypersomolar hyperglycemic nonketotic dehydration (HHND): etiology, pathophysiology and prevention during intravenous hyperalimentation. JPEN J Parenter Enteral Nutr 2:690–698PubMedGoogle Scholar
  85. 85.
    Van den Berghe G (2003) Insulin therapy for the critically ill patient. Clin Cornerstone 5:56–63Google Scholar
  86. 86.
    Mizock BA (2003) Blood glucose management during critical illness. Rev Endocr Metab Disord 4:187–194PubMedGoogle Scholar
  87. 87.
    Zoungas S, Patel A, Chalmers J et al (2010) Severe hypoglycemia and risks of vascular events and death. N Engl J Med 363(15):1410–1418PubMedGoogle Scholar
  88. 88.
    Van den Berghe G, Wilmer A, Hermans G et al (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354(5):449–461Google Scholar
  89. 89.
    Vlasselaers D, Milants I, Desmet L et al (2009) Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study. Lancet 373(9663):547–556PubMedGoogle Scholar
  90. 90.
    Wiener RS, Wiener DC, Larson RJ (2008) Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA 300(8):933–944PubMedGoogle Scholar
  91. 91.
    Griesdale DE, Souza RJ de, Dam RM van et al (2009) Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ 180(8):821–827PubMedGoogle Scholar
  92. 92.
    Marik PE, Preiser JC (2010) Toward understanding tight glycemic control in the ICU: a systematic review and metaanalysis. Chest 137(3):544–551PubMedGoogle Scholar
  93. 93.
    Hermans G, Schetz M, Berghe G van den (2008) Tight glucose control in critically ill adults. JAMA 300(23):2725PubMedGoogle Scholar
  94. 94.
    Gunst J, Van den Berghe G (2010) Blood glucose control in the intensive care unit: benefits and risks. Semin Dial 23(2):157–162PubMedGoogle Scholar
  95. 95.
    Van den Berghe G, Mesotten D, Vanhorebeek I (2009) Intensive insulin therapy in the intensive care unit. CMAJ 180(8):799–800Google Scholar
  96. 96.
    NICE-SUGAR Study Investigators, Finfer S, Chittock DR et al (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360(13):1283–1297Google Scholar
  97. 97.
    Adamkin DH (2003) Total parenteral nutrition-associated cholestasis: prematurity or amino acids? J Perinatol 23:437–438PubMedGoogle Scholar
  98. 98.
    Chung C, Buchman AL (2002) Postoperative jaundice and total parenteral nutrition-associated hepatic dysfunction. Clin Liver Dis 6:1067–1084PubMedGoogle Scholar
  99. 99.
    Angelico M, Guardia D (2000) Hepatobiliary complications associated with total parenteral nutrition. Alim Pharmacol Ther 14:54–57Google Scholar
  100. 100.
    Forchielli ML, Walker WA (2003) Nutritional factors contributing to the development of cholestasis during total parenteral nutrition. Adv Pediatr 50:245–267PubMedGoogle Scholar
  101. 101.
    Sandhu I et al (1999) Total parenteral nutrition and cholestasis. Clin Liv Dis 3:489–508Google Scholar
  102. 102.
    De Meijer VE, Gura KM, Meisel JA et al (2010) Parenteral fish oil monotherapy in the management of patients with parenteral nutrition-associated liver disease. Arch Surg 145(6):547–551Google Scholar
  103. 103.
    Buchman AL (2001) Complications of long-term home total parenteral nutrition. Dig Dis Sci 46:1–18PubMedGoogle Scholar
  104. 104.
    Owens JP, Geibig CB, Mirtallo JM (1989) Concurrent quality assurance for a nutrition-support service. Am J Hosp Pharm 46:2469–2476PubMedGoogle Scholar
  105. 105.
    Grünert A, Anhang A (1990) Überwachung der Patienten mit Ernährungstherapie – Biophysikalische und biochemische Meßgrößen. Klin Anasthesiol Intensivther 40:193–195PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Chirurgische Klinik und Poliklinik der Universität, Campus GroßhadernLudwig-Maximilians-Universität MünchenMünchenDeutschland

Personalised recommendations