Advertisement

International Journal of Colorectal Disease

, Volume 33, Issue 2, pp 209–218 | Cite as

The oral microbiome—the relevant reservoir for acute pediatric appendicitis?

  • Carlotta Blod
  • Nadine Schlichting
  • Sara Schülin
  • Anne Suttkus
  • Nicole Peukert
  • Catalina Suzana Stingu
  • Christian Hirsch
  • Wieland Elger
  • Martin Lacher
  • Ulf Bühligen
  • Steffi MayerEmail author
Original Article

Abstract

Purpose

The oral microbiome has been related to numerous extra oral diseases. Recent studies detected a high abundance of oral bacteria in inflamed appendices in pediatric patients. To elucidate the role of oral bacteria in acute pediatric appendicitis, we studied the oral and appendiceal microbiome of affected children compared to healthy controls.

Methods

Between January and June 2015, 21 children undergoing appendectomy for acute appendicitis and 28 healthy controls were prospectively enrolled in the study. All individuals underwent thorough dental examination and laboratory for inflammatory parameters. Samples of inflamed appendices and the gingival sulcus were taken for 16S rDNA sequencing. RT-qPCR of Fusobacterium nucleatum, Peptostreptococcus stomatis, and Eikenella corrodens was performed and their viability was tested under acidic conditions to mimic gastric transfer.

Results

In phlegmonous appendices, Bacteroidetes and Porphyromonas were discovered as dominant phylum and genus. In sulcus samples, Firmicutes and Streptococcus were detected predominantly. P. stomatis, E. corrodens, and F. nucleatum were identified in each group. Viable amounts of P. stomatis were increased in sulci of children with acute appendicitis compared to sulci of healthy controls. In inflamed appendices, viable amounts of E. corrodens and F. nucleatum were decreased compared to sulci of children with appendicitis. Postprandial viability could be demonstrated for all tested bacteria.

Conclusion

In children with acute appendicitis, we identified several oral bacterial pathogens. Based on postprandial viability of selected species, a viable migration from the oral cavity through the stomach to the appendix seems possible. Thus, the oral cavity could be a relevant reservoir for acute appendicitis.

Keywords

Oral bacteria Appendix Sequencing Microbiome Peptostreptococcus stomatis 

Notes

Acknowledgements

We are grateful to Marco Ginzel for his excellent theoretical and technical assistance.

Compliance with ethical standards

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

384_2017_2948_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 14 kb).
384_2017_2948_MOESM2_ESM.docx (14 kb)
ESM 2 (DOCX 14 kb).
384_2017_2948_MOESM3_ESM.docx (17 kb)
ESM 3 (DOCX 17.4 kb).

References

  1. 1.
    Walker AR, Segal I (1990) What causes appendicitis? J Clin Gastroenterol 12(2):127–129.  https://doi.org/10.1097/00004836-199004000-00002 CrossRefPubMedGoogle Scholar
  2. 2.
    Swidsinski A, Dorffel Y, Loening-Baucke V, Theissig F, Ruckert JC, Ismail M, Rau WA, Gaschler D, Weizenegger M, Kuhn S, Schilling J, Dorffel WV (2011) Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut 60(1):34–40.  https://doi.org/10.1136/gut.2009.191320 CrossRefPubMedGoogle Scholar
  3. 3.
    Jackson HT, Mongodin EF, Davenport KP, Fraser CM, Sandler AD, Zeichner SL (2014) Culture-independent evaluation of the appendix and rectum microbiomes in children with and without appendicitis. PLoS One 9(4):e95414.  https://doi.org/10.1371/journal.pone.0095414 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Humes DJ, Simpson J (2006) Acute appendicitis. BMJ 333(7567):530–534.  https://doi.org/10.1136/bmj.38940.664363.AE CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lamps LW (2010) Infectious causes of appendicitis. Infect Dis Clin N Am 24(4):995–1018, ix-x.  https://doi.org/10.1016/j.idc.2010.07.012 CrossRefGoogle Scholar
  6. 6.
    Larner AJ (1988) The aetiology of appendicitis. Br J Hosp Med 39(6):540–542PubMedGoogle Scholar
  7. 7.
    Salo M, Marungruang N, Roth B, Sundberg T, Stenstrom P, Arnbjornsson E, Fak F, Ohlsson B (2016) Evaluation of the microbiome in children's appendicitis. Int J Color Dis 32(1):19–28.  https://doi.org/10.1007/s00384-016-2639-x CrossRefGoogle Scholar
  8. 8.
    Deng Y, Chang DC, Zhang Y, Webb J, Gabre-Kidan A, Abdullah F (2010) Seasonal and day of the week variations of perforated appendicitis in US children. Pediatr Surg Int 26(7):691–696.  https://doi.org/10.1007/s00383-010-2628-z CrossRefPubMedGoogle Scholar
  9. 9.
    Zhong D, Brower-Sinning R, Firek B, Morowitz MJ (2014) Acute appendicitis in children is associated with an abundance of bacteria from the phylum fusobacteria. J Pediatr Surg 49(3):441–446.  https://doi.org/10.1016/j.jpedsurg.2013.06.026 CrossRefPubMedGoogle Scholar
  10. 10.
    Swidsinski A, Dorffel Y, Loening-Baucke V, Tertychnyy A, Biche-Ool S, Stonogin S, Guo Y, Sun ND (2012) Mucosal invasion by Fusobacteria is a common feature of acute appendicitis in Germany, Russia, and China. Saudi J Gastroenterol 18(1):55–58.  https://doi.org/10.4103/1319-3767.91734 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Guinane CM, Tadrous A, Fouhy F, Ryan CA, Dempsey EM, Murphy B, Andrews E, Cotter PD, Stanton C, Ross RP (2013) Microbial composition of human appendices from patients following appendectomy. MBio 4(1).  https://doi.org/10.1128/mBio.00366-12
  12. 12.
    Rogers MB, Brower-Sinning R, Firek B, Zhong D, Morowitz MJ (2016) Acute appendicitis in children is associated with a local expansion of Fusobacteria. Clin Infect Dis 63(1):71–78.  https://doi.org/10.1093/cid/ciw208 CrossRefPubMedGoogle Scholar
  13. 13.
    Samuel M (2002) Pediatric appendicitis score. J Pediatr Surg 37(6):877–881.  https://doi.org/10.1053/jpsu.2002.32893 CrossRefPubMedGoogle Scholar
  14. 14.
    Frohlich GM, Schoch B, Wolfrum M, Osranek M, Enseleit F, Herzog BA, Hasun M, Luscher TF, Meier P, Gaemperli O, Kaufmann PA, Corti R (2014) The impact of modern noninvasive cardiac imaging on coronary intervention rates. J Interv Cardiol 27(1):50–57.  https://doi.org/10.1111/joic.12079 CrossRefPubMedGoogle Scholar
  15. 15.
    Lacher M, Muensterer OJ, Yannam GR, Aprahamian CJ, Perger L, Megison M, DC Y, Beierle EA, Anderson SA, Chen MK, Harmon CM (2012) Feasibility of single-incision pediatric endosurgery for treatment of appendicitis in 415 children. J Laparoendosc Adv Surg Tech A 22(6):604–608.  https://doi.org/10.1089/lap.2012.0107 CrossRefPubMedGoogle Scholar
  16. 16.
    Fouad AF, Barry J, Caimano M, Clawson M, Zhu Q, Carver R, Hazlett K, Radolf JD (2002) PCR-based identification of bacteria associated with endodontic infections. J Clin Microbiol 40(9):3223–3231.  https://doi.org/10.1128/jcm.40.9.3223-3231.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Schaumann S, Staufenbiel I, Scherer R, Schilhabel M, Winkel A, Stumpp SN, Eberhard J, Stiesch M (2014) Pyrosequencing of supra- and subgingival biofilms from inflamed peri-implant and periodontal sites. BMC oral health 14(1):157.  https://doi.org/10.1186/1472-6831-14-157 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, Sogin ML (2013) Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol 4(12):1111–1119.  https://doi.org/10.1111/2041-210X.12114 CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML (2015) Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J 9(4):968–979.  https://doi.org/10.1038/ismej.2014.195 CrossRefPubMedGoogle Scholar
  20. 20.
    Angly FE, Dennis PG, Skarshewski A, Vanwonterghem I, Hugenholtz P, Tyson GW (2014) CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction. Microbiome 2(1):11.  https://doi.org/10.1186/2049-2618-2-11 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sheridan GE, Masters CI, Shallcross JA, MacKey BM (1998) Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl Environ Microbiol 64(4):1313–1318PubMedPubMedCentralGoogle Scholar
  23. 23.
    Sener A, Erkin Y, Sener A, Tasdogen A, Dokumaci E, Elar Z (2015) In vitro comparison of epidural bacteria filters permeability and screening scanning electron microscopy. Braz J Anesthesiol 65(6):491–496.  https://doi.org/10.1016/j.bjane.2013.08.004 CrossRefPubMedGoogle Scholar
  24. 24.
    Yuk HG, Jo SC, Seo HK, Park SM, Lee SC (2008) Effect of storage in juice with or without pulp and/or calcium lactate on the subsequent survival of Escherichia coli O157:H7 in simulated gastric fluid. Int J Food Microbiol 123(3):198–203.  https://doi.org/10.1016/j.ijfoodmicro.2008.01.013 CrossRefPubMedGoogle Scholar
  25. 25.
    Vielkind P, Jentsch H, Eschrich K, Rodloff AC, Stingu CS (2015) Prevalence of Actinomyces spp. in patients with chronic periodontitis. Int J Med Microbiol 305(7):682–688.  https://doi.org/10.1016/j.ijmm.2015.08.018 CrossRefPubMedGoogle Scholar
  26. 26.
    Carr NJ (2000) The pathology of acute appendicitis. Ann Diagn Pathol 4(1):46–58.  https://doi.org/10.1053/adpa.2000.0046 CrossRefPubMedGoogle Scholar
  27. 27.
    Gomez A, Nelson KE (2016) The oral microbiome of children: development, disease, and implications beyond oral health. Microb Ecol 73(2):492–503.  https://doi.org/10.1007/s00248-016-0854-1 CrossRefPubMedGoogle Scholar
  28. 28.
    Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43(11):5721–5732.  https://doi.org/10.1128/JCM.43.11.5721-5732.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kononen E, Bryk A, Niemi P, Kanervo-Nordstrom A (2007) Antimicrobial susceptibilities of Peptostreptococcus anaerobius and the newly described Peptostreptococcus stomatis isolated from various human sources. Antimicrob Agents Chemother 51(6):2205–2207.  https://doi.org/10.1128/aac.00056-07 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cao H, Qi Z, Jiang H, Zhao J, Liu Z, Tang Z (2012) Detection of Porphyromonas endodontalis, Porphyromonas gingivalis and Prevotella intermedia in primary endodontic infections in a Chinese population. Int Endod J 45(8):773–781.  https://doi.org/10.1111/j.1365-2591.2012.02035.x CrossRefPubMedGoogle Scholar
  31. 31.
    Dahlen G, Leonhardt A (2006) A new checkerboard panel for testing bacterial markers in periodontal disease. Oral Microbiol Immunol 21(1):6–11.  https://doi.org/10.1111/j.1399-302X.2005.00243.x CrossRefPubMedGoogle Scholar
  32. 32.
    Lombardo Bedran TB, Marcantonio RA, Spin Neto R, Alves Mayer MP, Grenier D, Spolidorio LC, Spolidorio DP (2012) Porphyromonas endodontalis in chronic periodontitis: a clinical and microbiological cross-sectional study. J Oral Microbiol 4(1).  https://doi.org/10.3402/jom.v4i0.10123
  33. 33.
    Vaisanen ML, Kiviranta M, Summanen P, Finegold SM, Jousimies-Somer HR (1997) Porphyromonas endodontalis-like organisms from extraoral sources. Clin Infect Dis 25(Suppl 2):S191–S193.  https://doi.org/10.1086/516223 CrossRefPubMedGoogle Scholar
  34. 34.
    Allen-Vercoe E, Strauss J, Chadee K (2011) Fusobacterium nucleatum: an emerging gut pathogen? Gut Microbes 2(5):294–298.  https://doi.org/10.4161/gmic.2.5.18603 CrossRefPubMedGoogle Scholar
  35. 35.
    Han YW, Wang X (2013) Mobile microbiome: oral bacteria in extra-oral infections and inflammation. J Dent Res 92(6):485–491.  https://doi.org/10.1177/0022034513487559 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Decker MD (1986) Eikenella corrodens. Infect Control 7(1):36–41CrossRefPubMedGoogle Scholar
  37. 37.
    Knudsen TD, Simko EJ (1995) Eikenella corrodens: an unexpected pathogen causing a persistent peritonsillar abscess. Ear Nose Throat J 74(2):114–117PubMedGoogle Scholar
  38. 38.
    Maia A, Goldstein FW, Acar JF, Roland F (1980) Isolation of Eikenella corrodens from human infections: report of six cases. The Journal of infection 2(4):347–353.  https://doi.org/10.1016/S0163-4453(80)92792-9 CrossRefPubMedGoogle Scholar
  39. 39.
    Raffensperger JG (1986) Eikenella corrodens infections in children. J Pediatr Surg 21(7):644–646.  https://doi.org/10.1016/S0022-3468(86)80423-7 CrossRefPubMedGoogle Scholar
  40. 40.
    Gonzalvez Pinera J, Marco Macian A, Perez Martinez A, Escriban (1995) [Intra-abdominal infections caused by Eikenella corrodens in children]. Cirugia pediatrica : organo oficial de la Sociedad Espanola de Cirugia Pediatrica 8 (4):145–147Google Scholar
  41. 41.
    Chen CK, Wilson ME (1992) Eikenella corrodens in human oral and non-oral infections: a review. J Periodontol 63(12):941–953.  https://doi.org/10.1902/jop.1992.63.12.941 CrossRefPubMedGoogle Scholar
  42. 42.
    Danziger LH, Schoonover LL, Kale P, Resnick DJ (1994) Eikenella corrodens as an intra-abdominal pathogen. Am Surg 60(4):296–299PubMedGoogle Scholar
  43. 43.
    Thompson GC, Morrison E, Ross M, Liu H, Vanderkooi OG, Eccles R (2016) The use of routine blood cultures in pediatric appendicitis. Pediatr Emerg Care 33(12):e160–e163.  https://doi.org/10.1097/pec.0000000000000877 CrossRefGoogle Scholar
  44. 44.
    Colvin JM, Bachur R, Kharbanda A (2007) The presentation of appendicitis in preadolescent children. Pediatr Emerg Care 23(12):849–855.  https://doi.org/10.1097/pec.0b013e31815c9d7f CrossRefPubMedGoogle Scholar
  45. 45.
    Coldewey SM, Hartmann M, Schmidt DS, Engelking U, Ukena SN, Gunzer F (2007) Impact of the rpoS genotype for acid resistance patterns of pathogenic and probiotic Escherichia coli. BMC Microbiol 7(1):21.  https://doi.org/10.1186/1471-2180-7-21 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Huang L, Yin Y, Yang L, Wang C, Li Y, Zhou Z (2017) Comparison of antibiotic therapy and appendectomy for acute uncomplicated appendicitis in children: a meta-analysis. JAMA Pediatr 171(5):426–434.  https://doi.org/10.1001/jamapediatrics.2017.0057 CrossRefPubMedGoogle Scholar
  47. 47.
    Simon-Soro A, Tomas I, Cabrera-Rubio R, Catalan MD, Nyvad B, Mira A (2013) Microbial geography of the oral cavity. J Dent Res 92(7):616–621.  https://doi.org/10.1177/0022034513488119 CrossRefPubMedGoogle Scholar
  48. 48.
    Rogers NL, Cole SA, Lan HC, Crossa A, Demerath EW (2007) New saliva DNA collection method compared to buccal cell collection techniques for epidemiological studies. Am J Hum Biol 19(3):319–326.  https://doi.org/10.1002/ajhb.20586 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Carlotta Blod
    • 1
  • Nadine Schlichting
    • 1
    • 2
  • Sara Schülin
    • 1
  • Anne Suttkus
    • 1
  • Nicole Peukert
    • 1
  • Catalina Suzana Stingu
    • 3
  • Christian Hirsch
    • 4
  • Wieland Elger
    • 4
  • Martin Lacher
    • 1
  • Ulf Bühligen
    • 1
  • Steffi Mayer
    • 1
    Email author
  1. 1.Department of Pediatric SurgeryUniversity of LeipzigLeipzigGermany
  2. 2.Experimental surgery/CardiOMICs research group, Department of Diagnostics and New TechnologiesFraunhofer Institute for Cell Therapy and Immunology (IZI)LeipzigGermany
  3. 3.Institute for Medical Microbiology and Epidemiology of Infectious DiseasesUniversity of LeipzigLeipzigGermany
  4. 4.Department of Pediatric Dentistry and Primary PreventionUniversity of LeipzigLeipzigGermany

Personalised recommendations