International Journal of Colorectal Disease

, Volume 30, Issue 9, pp 1173–1183 | Cite as

A prognostic analysis of 895 cases of stage III colon cancer in different colon subsites

  • Yan Zhang
  • Junli Ma
  • Sai Zhang
  • Ganlu Deng
  • Xiaoling Wu
  • Jingxuan He
  • Haiping Pei
  • Hong Shen
  • Shan ZengEmail author
Original Article



Stage III colon cancer is currently treated as an entity with a unified therapeutic principle. The aim of the retrospective study is to explore the clinicopathological characteristics and outcomes of site-specific stage III colon cancers and the influences of tumor location on prognosis.


Eight hundred ninety-five patients with stage III colon cancer treated with radical operation and subsequent adjuvant chemotherapy (5-fluorouracil/oxaliplatin) were divided into seven groups according to colon segment (cecum, ascending colon, hepatic flexure, transverse colon, splenic flexure, descending colon, and sigmoid colon). Expression of excision repair cross-complementing group 1 (ERCC1) and thymidylate synthase (TS) was examined by immunohistochemistry. We assessed if differences exist in patient characteristics and clinic outcomes between the seven groups.


There were significant differences in tumor differentiation (P < 0.001), T stage (P < 0.001), N stage (P < 0.001), American Joint Committee on Cancer (AJCC) tumor–node–metastasis (TNM) stage (P < 0.001), metachronous liver metastasis (P < 0.001), metachronous lung metastasis (P < 0.001), and ERCCI expression (P < 0.001) between the seven groups. Both 5-year recurrence-free survival (RFS) and 5-year overall survival (OS) exhibited significant differences (both P < 0.001) with survival gradually decreasing from cecum to sigmoid colon. Cox regression analyses identified that tumor location was an independent prognostic factor for RFS and OS.


Stage III colon cancer located proximally carried a poorer survival than that located distally. Different efficacies of FOLFOX adjuvant chemotherapy may be an important factor affecting survival of site-specific stage III colon cancers.


Colon cancer Stage III Clinical characteristics Prognosis Tumor location 



This study was supported by the grants from the National Nature Science Foundation of China (Nos. 30770971, 81172470, 81070362, and 81372629).

Conflict of interest

All authors declare no potential conflicts of interest.

Supplementary material

384_2015_2273_MOESM1_ESM.pdf (597 kb)
Online Resource 1 (PDF 597 kb)


  1. 1.
    Bufill JA (1990) Colorectal cancer: evidence for distinct genetic categories based on proximal or distal tumor location. Ann Intern Med 113(10):779–788CrossRefPubMedGoogle Scholar
  2. 2.
    Iacopetta B (2002) Are there two sides to colorectal cancer? Int J Cancer 101(5):403–408CrossRefPubMedGoogle Scholar
  3. 3.
    Yamauchi M, Lochhead P, Morikawa T, Huttenhower C, Chan AT, Giovannucci E et al (2012) Colorectal cancer: a tale of two sides or a continuum? Gut 61(6):794–797PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Pocard M, Salmon RJ, Muleris M, Remvikos Y, Bara J, Dutrillaux B et al (1995) Two colons—two cancers? Proximal or distal adenocarcinoma: arguments for a different carcinogenesis. Bull Cancer 82(1):10–21PubMedGoogle Scholar
  5. 5.
    Gervaz P, Bucher P, Morel P (2004) Two colons—two cancers: paradigm shift and clinical implications. J Surg Oncol 88(4):261–266CrossRefPubMedGoogle Scholar
  6. 6.
    Meguid RA, Slidell MB, Wolfgang CL, Chang DC, Ahuja N (2008) Is there a difference in survival between right- versus left-sided colon cancers? Ann Surg Oncol 15(9):2388–2394PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Shen H, Huang J, Pei H, Zeng S, Tao Y, Shen L et al (2013) Comparative proteomic study for profiling differentially expressed proteins between Chinese left- and right-sided colon cancers. Cancer Sci 104(1):135–141CrossRefPubMedGoogle Scholar
  8. 8.
    Samowitz WS, Albertsen H, Herrick J, Levin TR, Sweeney C, Murtaugh MA et al (2005) Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology 129(3):837–845CrossRefPubMedGoogle Scholar
  9. 9.
    Nosho K, Irahara N, Shima K, Kure S, Kirkner GJ, Schernhammer ES et al (2008) Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One 3(11), e3698PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Ogino S, Chan AT, Fuchs CS, Giovannucci E (2011) Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut 60(3):397–411PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Jess P, Hansen IO, Gamborg M, Jess T (2013) A nationwide Danish cohort study challenging the categorisation into right-sided and left-sided colon cancer. BMJ Open 3(5)Google Scholar
  12. 12.
    Kim HS (2013) Site-specific colorectal cancer; how is it different? Korean J Gastroenterol 61(2):63–70CrossRefPubMedGoogle Scholar
  13. 13.
    Birkenkamp-Demtroder K, Olesen SH, Sorensen FB, Laurberg S, Laiho P, Aaltonen LA et al (2005) Differential gene expression in colon cancer of the caecum versus the sigmoid and rectosigmoid. Gut 54(3):374–384PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Benedix F, Meyer F, Kube R, Kropf S, Kuester D, Lippert H et al (2012) Influence of anatomical subsite on the incidence of microsatellite instability, and KRAS and BRAF mutation rates in patients with colon carcinoma. Pathol Res Pract 208(10):592–597CrossRefPubMedGoogle Scholar
  15. 15.
    Yamauchi M, Morikawa T, Kuchiba A, Imamura Y, Qian ZR, Nishihara R et al (2012) Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut 61(6):847–854PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Bhangu A, Kiran RP, Slesser A, Fitzgerald JE, Brown G, Tekkis P (2013) Survival after resection of colorectal cancer based on anatomical segment of involvement. Ann Surg Oncol 20(13):4161–4168CrossRefPubMedGoogle Scholar
  17. 17.
    Andre T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T et al (2004) Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 350(23):2343–2351CrossRefPubMedGoogle Scholar
  18. 18.
    Kosmider S, Lipton L (2007) Adjuvant therapies for colorectal cancer. World J Gastroenterol 13(28):3799–3805PubMedGoogle Scholar
  19. 19.
    Sharif S, O‘Connell MJ, Yothers G, Lopa S, Wolmark N (2008) FOLFOX and FLOX regimens for the adjuvant treatment of resected stage II and III colon cancer. Cancer Investig 26(9):956–963CrossRefGoogle Scholar
  20. 20.
    Haller DG, Tabernero J, Maroun J, de Braud F, Price T, Van Cutsem E et al (2011) Capecitabine plus oxaliplatin compared with fluorouracil and folinic acid as adjuvant therapy for stage III colon cancer. J Clin Oncol 29(11):1465–1471CrossRefPubMedGoogle Scholar
  21. 21.
    Raymond E, Faivre S, Chaney S, Woynarowski J, Cvitkovic E (2002) Cellular and molecular pharmacology of oxaliplatin. Mol Cancer Ther 1(3):227–235PubMedGoogle Scholar
  22. 22.
    Martin LP, Hamilton TC, Schilder RJ (2008) Platinum resistance: the role of DNA repair pathways. Clin Cancer Res 14(5):1291–1295CrossRefPubMedGoogle Scholar
  23. 23.
    Reed E (1998) Nucleotide excision repair and anti-cancer chemotherapy. Cytotechnology 27(1-3):187–201PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Rabik CA, Dolan ME (2007) Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 33(1):9–23PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Park DJ, Lenz HJ (2006) Determinants of chemosensitivity in gastric cancer. Curr Opin Pharmacol 6(4):337–344CrossRefPubMedGoogle Scholar
  26. 26.
    Papadaki C, Sfakianaki M, Ioannidis G, Lagoudaki E, Trypaki M, Tryfonidis K et al (2012) ERCC1 and BRAC1 mRNA expression levels in the primary tumor could predict the effectiveness of the second-line cisplatin-based chemotherapy in pretreated patients with metastatic non-small cell lung cancer. J Thorac Oncol 7(4):663–671CrossRefPubMedGoogle Scholar
  27. 27.
    Han JJ, Baek SK, Lee JJ, Kim GY, Kim SY, Lee SH (2014) Combination of TRAP1 and ERCC1 expression predicts clinical outcomes in metastatic colorectal cancer treated with oxaliplatin/5-fluorouracil. Cancer Res Treat 46(1):55–64PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Kuwabara K, Kumamoto K, Ishibashi K, Okada N, Ishiguro T, Ohsawa T et al (2011) The relationship between the efficacy of mFOLFOX6 treatment and the expression of TS, DPD, TP, and ERCC-1 in unresectable colorectal cancer. Gan To Kagaku Ryoho 38(12):2224–2227PubMedGoogle Scholar
  29. 29.
    Li P, Fang YJ, Li F, Ou QJ, Chen G, Ma G (2013) ERCC1, defective mismatch repair status as predictive biomarkers of survival for stage III colon cancer patients receiving oxaliplatin-based adjuvant chemotherapy. Br J Cancer 108(6):1238–1244PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Huang MY, Tsai HL, Lin CH, Huang CW, Ma CJ, Huang CM et al (2013) Predictive value of ERCC1, ERCC2, and XRCC1 overexpression for stage III colorectal cancer patients receiving FOLFOX-4 adjuvant chemotherapy. J Surg Oncol 108(7):457–464CrossRefPubMedGoogle Scholar
  31. 31.
    Danenberg PV (1977) Thymidylate synthetase—a target enzyme in cancer chemotherapy. Biochim Biophys Acta 473(2):73–92PubMedGoogle Scholar
  32. 32.
    Aschele C, Debernardis D, Tunesi G, Maley F, Sobrero A (2000) Thymidylate synthase protein expression in primary colorectal cancer compared with the corresponding distant metastases and relationship with the clinical response to 5-fluorouracil. Clin Cancer Res 6(12):4797–4802PubMedGoogle Scholar
  33. 33.
    Edler D, Glimelius B, Hallstrom M, Jakobsen A, Johnston PG, Magnusson I et al (2002) Thymidylate synthase expression in colorectal cancer: a prognostic and predictive marker of benefit from adjuvant fluorouracil-based chemotherapy. J Clin Oncol 20(7):1721–1728CrossRefPubMedGoogle Scholar
  34. 34.
    Ciaparrone M, Quirino M, Schinzari G, Zannoni G, Corsi DC, Vecchio FM et al (2006) Predictive role of thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase expression in colorectal cancer patients receiving adjuvant 5-fluorouracil. Oncology 70(5):366–377CrossRefPubMedGoogle Scholar
  35. 35.
    Tanaka K, Saigusa S, Toiyama Y, Koike Y, Okugawa Y, Yokoe T et al (2012) TS and DPD mRNA levels on formalin-fixed paraffin-embedded specimens as predictors for distant recurrence of rectal cancer treated with preoperative chemoradiotherapy. J Surg Oncol 105(6):529–534CrossRefPubMedGoogle Scholar
  36. 36.
    Sasako M, Terashima M, Ichikawa W, Ochiai A, Kitada K, Kurahashi I, et al (2014) Impact of the expression of thymidylate synthase and dihydropyrimidine dehydrogenase genes on survival in stage II/III gastric cancer. Gastric CancerGoogle Scholar
  37. 37.
    Dahl O, Fluge O, Carlsen E, Wiig JN, Myrvold HE, Vonen B et al (2009) Final results of a randomised phase III study on adjuvant chemotherapy with 5 FU and levamisol in colon and rectum cancer stage II and III by the Norwegian Gastrointestinal Cancer Group. Acta Oncol 48(3):368–376CrossRefPubMedGoogle Scholar
  38. 38.
    Fluge O, Gravdal K, Carlsen E, Vonen B, Kjellevold K, Refsum S et al (2009) Expression of EZH2 and Ki-67 in colorectal cancer and associations with treatment response and prognosis. Br J Cancer 101(8):1282–1289PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Olaussen KA, Dunant A, Fouret P, Brambilla E, Andre F, Haddad V et al (2006) DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355(10):983–991CrossRefPubMedGoogle Scholar
  40. 40.
    Wray CM, Ziogas A, Hinojosa MW, Le H, Stamos MJ, Zell JA (2009) Tumor subsite location within the colon is prognostic for survival after colon cancer diagnosis. Dis Colon Rectum 52(8):1359–1366CrossRefPubMedGoogle Scholar
  41. 41.
    Bilimoria KY, Palis B, Stewart AK, Bentrem DJ, Freel AC, Sigurdson ER et al (2008) Impact of tumor location on nodal evaluation for colon cancer. Dis Colon Rectum 51(2):154–161CrossRefPubMedGoogle Scholar
  42. 42.
    Benedix F, Kube R, Meyer F, Schmidt U, Gastinger I, Lippert H (2010) 17,641 patients: differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum 53(1):57–64CrossRefPubMedGoogle Scholar
  43. 43.
    Ishihara S, Nishikawa T, Tanaka T, Tanaka J, Kiyomatsu T, Kawai K et al (2014) Prognostic impact of tumor location in stage IV colon cancer: a propensity score analysis in a multicenter study. Int J Surg 12(9):925–930CrossRefPubMedGoogle Scholar
  44. 44.
    Roncucci L, Fante R, Losi L, Di Gregorio C, Micheli A, Benatti P et al (1996) Survival for colon and rectal cancer in a population-based cancer registry. Eur J Cancer 32A(2):295–302CrossRefPubMedGoogle Scholar
  45. 45.
    Kornmann M, Schwabe W, Sander S, Kron M, Strater J, Polat S et al (2003) Thymidylate synthase and dihydropyrimidine dehydrogenase mRNA expression levels: predictors for survival in colorectal cancer patients receiving adjuvant 5-fluorouracil. Clin Cancer Res 9(11):4116–4124PubMedGoogle Scholar
  46. 46.
    Johnston PG, Fisher ER, Rockette HE, Fisher B, Wolmark N, Drake JC et al (1994) The role of thymidylate synthase expression in prognosis and outcome of adjuvant chemotherapy in patients with rectal cancer. J Clin Oncol 12(12):2640–2647PubMedGoogle Scholar
  47. 47.
    Li S, Zhu L, Yao L, Xia L, Pan L (2014) Association between ERCC1 and TS mRNA levels and disease free survival in colorectal cancer patients receiving oxaliplatin and fluorouracil (5-FU) adjuvant chemotherapy. BMC Gastroenterol 14:154PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Findlay MP, Cunningham D, Morgan G, Clinton S, Hardcastle A, Aherne GW (1997) Lack of correlation between thymidylate synthase levels in primary colorectal tumours and subsequent response to chemotherapy. Br J Cancer 75(6):903–909PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Berglund A, Edler D, Molin D, Nordlinder H, Graf W, Glimelius B (2002) Thymidylate synthase and p53 expression in primary tumor do not predict chemotherapy outcome in metastatic colorectal carcinoma. Anticancer Res 22(6B):3653–3659PubMedGoogle Scholar
  50. 50.
    Nawa T, Kato J, Kawamoto H, Okada H, Yamamoto H, Kohno H et al (2008) Differences between right- and left-sided colon cancer in patient characteristics, cancer morphology and histology. J Gastroenterol Hepatol 23(3):418–423CrossRefPubMedGoogle Scholar
  51. 51.
    Azzoni C, Bottarelli L, Campanini N, Di Cola G, Bader G, Mazzeo A et al (2007) Distinct molecular patterns based on proximal and distal sporadic colorectal cancer: arguments for different mechanisms in the tumorigenesis. Int J Color Dis 22(2):115–126CrossRefGoogle Scholar
  52. 52.
    Glebov OK, Rodriguez LM, Nakahara K, Jenkins J, Cliatt J, Humbyrd CJ et al (2003) Distinguishing right from left colon by the pattern of gene expression. Cancer Epidemiol Biomarkers Prev 12(8):755–762PubMedGoogle Scholar
  53. 53.
    Tran B, Kopetz S, Tie J, Gibbs P, Jiang ZQ, Lieu CH et al (2011) Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer 117(20):4623–4632PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Pai RK, Jayachandran P, Koong AC, Chang DT, Kwok S, Ma L et al (2012) BRAF-mutated, microsatellite-stable adenocarcinoma of the proximal colon: an aggressive adenocarcinoma with poor survival, mucinous differentiation, and adverse morphologic features. Am J Surg Pathol 36(5):744–752CrossRefPubMedGoogle Scholar
  55. 55.
    Kalady MF, Dejulius KL, Sanchez JA, Jarrar A, Liu X, Manilich E et al (2012) BRAF mutations in colorectal cancer are associated with distinct clinical characteristics and worse prognosis. Dis Colon Rectum 55(2):128–133CrossRefPubMedGoogle Scholar
  56. 56.
    Cui X, Shirai Y, Wakai T, Yokoyama N, Hirano S, Hatakeyama K (2004) Aberrant expression of pRb and p16(INK4), alone or in combination, indicates poor outcome after resection in patients with colorectal carcinoma. Hum Pathol 35(10):1189–1195CrossRefPubMedGoogle Scholar
  57. 57.
    Kucherlapati MH, Yang K, Fan K, Kuraguchi M, Sonkin D, Rosulek A et al (2008) Loss of Rb1 in the gastrointestinal tract of Apc1638N mice promotes tumors of the cecum and proximal colon. Proc Natl Acad Sci U S A 105(40):15493–15498PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yan Zhang
    • 1
    • 2
  • Junli Ma
    • 1
    • 2
  • Sai Zhang
    • 2
  • Ganlu Deng
    • 2
  • Xiaoling Wu
    • 2
  • Jingxuan He
    • 2
  • Haiping Pei
    • 3
  • Hong Shen
    • 2
  • Shan Zeng
    • 1
    Email author
  1. 1.Department of Oncology, Xiangya HospitalCentral South UniversityChangshaChina
  2. 2.Institute of Medical Sciences, Xiangya HospitalCentral South UniversityChangshaChina
  3. 3.Department of Gastrointestinal Surgery, Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations