International Journal of Colorectal Disease

, Volume 30, Issue 8, pp 1015–1028 | Cite as

Stage-specific frequency and prognostic significance of aneuploidy in patients with sporadic colorectal cancer—a meta-analysis and current overview

  • Tilman Laubert
  • Sandra Freitag-Wolf
  • Michael Linnebacher
  • Alexandra König
  • Brigitte Vollmar
  • Jens K. Habermann
  • on behalf of the North German Tumorbank of Colorectal Cancer (ColoNet) consortium
Original Article



Aneuploidy has long been suggested as an independent prognostic marker for colorectal cancer (CRC) patients and could thus aid for individualized medicine. However, due to a large spectrum of deviating studies, expert panels do not recommend ploidy assessment. In order to clarify a potential bias of stage-specific frequency of aneuploidy, we now conducted a meta-analysis combined with a systematic review regarding aneuploidy and prognosis.


A systematic, web-based search process retrieved 1935 studies published in English between 1990 and 2011. The defined endpoint for the meta-analysis was an increase in aneuploidy frequency between early- (Dukes A, B and UICC I, II; n = 3632 samples) and late-stage (Dukes C, D and UICC III, IV; n = 3440 samples) colorectal carcinomas.


Of 1935 studies initially identified, 17 image (2130 patients) and 20 (7023 patients) flow cytometric studies were analyzed in detail. The meta-analysis (7072 patients) revealed late-stage CRC to be more frequently aneuploid than early-stage CRC (odds ratio 1.51, 95 % CI 1.37–1.67; p = 0.0007). Independent of tumor stage, the overall range of aneuploidy was 39 to 81 % (median 58 %), and altogether, 21 (54.1 %) studies described a significant prognostic impact of aneuploidy for overall, disease-specific, and recurrence-free survival, respectively.


A substantial number of studies showed a prognostic importance of aneuploidy in CRC. Furthermore, the higher frequency of aneuploidy in late-stage CRC implies an increase in genomic instability with CRC progression, indicating aneuploidy to be also a stage-specific prognostic marker.


Colorectal cancer Aneuploidy Prognosis Chromosomal instability Meta-analysis 



Grants from the Ad Infinitum Foundation, the Werner & Clara Kreitz Foundation and the H.W. & J. Hector Foundation are gratefully acknowledged. This review was performed by the North German Tumorbank of Colorectal Cancer (ColoNet) being generously funded by the German Cancer Aid Foundation (DKH #108446) and in collaboration with the Surgical Center for Translational Oncology – Lübeck (SCTO-L).

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Shi Q, Mandrekar SJ, Sargent DJ (2012) Predictive biomarkers in colorectal cancer: usage, validation, and design in clinical trials. Scand J Gastroenterol 47(3):356–362. doi: 10.3109/00365521.2012.640836 PubMedCrossRefGoogle Scholar
  2. 2.
    Hawkins N, Norrie M, Cheong K, Mokany E, Ku SL, Meagher A, O’Connor T, Ward R (2002) CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology 122(5):1376–1387PubMedCrossRefGoogle Scholar
  3. 3.
    Jass JR (2007) Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50(1):113–130. doi: 10.1111/j.1365-2559.2006.02549.x PubMedCrossRefGoogle Scholar
  4. 4.
    Cascinu S, Del Ferro E, Grianti C, Ligi M, Catalano G (1996) S-phase fraction and tumor aneuploidy in colorectal carcinoma of young patients. Cancer 78(9):1857–1860. doi: 10.1002/(SICI)1097-0142(19961101)78:9<1857::AID-CNCR3>3.0.CO;2-C PubMedCrossRefGoogle Scholar
  5. 5.
    Rajagopalan H, Lengauer C (2004) Aneuploidy and cancer. Nature 432(7015):338–341. doi: 10.1038/nature03099 PubMedCrossRefGoogle Scholar
  6. 6.
    Geigl JB, Obenauf AC, Schwarzbraun T, Speicher MR (2008) Defining ‘chromosomal instability’. Trends Genet 24(2):64–69. doi: 10.1016/j.tig.2007.11.006 PubMedCrossRefGoogle Scholar
  7. 7.
    Kim IJ, Kang HC, Park JH, Shin Y, Ku JL, Lim SB, Park SY, Jung SY, Kim HK, Park JG (2003) Development and applications of a beta-catenin oligonucleotide microarray: beta-catenin mutations are dominantly found in the proximal colon cancers with microsatellite instability. Clin Cancer Res 9(8):2920–2925PubMedGoogle Scholar
  8. 8.
    Hveem TS, Merok MA, Pretorius ME, Novelli M, Baevre MS, Sjo OH, Clinch N, Liestol K, Svindland A, Lothe RA, Nesbakken A, Danielsen HE (2014) Prognostic impact of genomic instability in colorectal cancer. Br J Cancer 110(8):2159–2164. doi: 10.1038/bjc.2014.133 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Orsetti B, Selves J, Bascoul-Mollevi C, Lasorsa L, Gordien K, Bibeau F, Massemin B, Paraf F, Soubeyran I, Hostein I, Dapremont V, Guimbaud R, Cazaux C, Longy M, Theillet C (2014) Impact of chromosomal instability on colorectal cancer progression and outcome. BMC Cancer 14:121. doi: 10.1186/1471-2407-14-121 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Pino MS, Chung DC (2010) The chromosomal instability pathway in colon cancer. Gastroenterology 138(6):2059–2072. doi: 10.1053/j.gastro.2009.12.065 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Burum-Auensen E, DeAngelis PM, Schjolberg AR, Roislien J, Mjaland O, Clausen OP (2008) Reduced level of the spindle checkpoint protein BUB1B is associated with aneuploidy in colorectal cancers. Cell Prolif 41(4):645–659. doi: 10.1111/j.1365-2184.2008.00539.x PubMedCrossRefGoogle Scholar
  12. 12.
    Kops GJ, Weaver BA, Cleveland DW (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5(10):773–785. doi: 10.1038/nrc1714 PubMedCrossRefGoogle Scholar
  13. 13.
    Dey P (2004) Aneuploidy and malignancy: an unsolved equation. J Clin Pathol 57(12):1245–1249. doi: 10.1136/jcp.2004.018952 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Witzig TE, Loprinzi CL, Gonchoroff NJ, Reiman HM, Cha SS, Wieand HS, Katzmann JA, Paulsen JK, Moertel CG (1991) DNA ploidy and cell kinetic measurements as predictors of recurrence and survival in stages B2 and C colorectal adenocarcinoma. Cancer 68(4):879–888PubMedCrossRefGoogle Scholar
  15. 15.
    Sinicrope FA, Rego RL, Halling KC, Foster N, Sargent DJ, La Plant B, French AJ, Laurie JA, Goldberg RM, Thibodeau SN, Witzig TE (2006) Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients. Gastroenterology 131(3):729–737. doi: 10.1053/j.gastro.2006.06.005 PubMedCrossRefGoogle Scholar
  16. 16.
    Gerling M, Meyer KF, Fuchs K, Igl BW, Fritzsche B, Ziegler A, Bader F, Kujath P, Schimmelpenning H, Bruch HP, Roblick UJ, Habermann JK (2010) High frequency of aneuploidy defines ulcerative colitis-associated carcinomas: a comparative prognostic study to sporadic colorectal carcinomas. Ann Surg. doi: 10.1097/SLA.0b013e3181deb664 PubMedGoogle Scholar
  17. 17.
    Bosari S, Lee AK, Wiley BD, Heatley GJ, Hamilton WM, Silverman ML (1992) DNA quantitation by image analysis of paraffin-embedded colorectal adenocarcinomas and its prognostic value. Mod Pathol 5(3):324–328PubMedGoogle Scholar
  18. 18.
    Michelassi F, Ewing C, Montag A, Vannucci L, Segalin A, Panozzo M, Bibbo M, Dytch H, Chieco-Bianchi P (1992) Prognostic significance of ploidy determination in rectal cancer. Hepatogastroenterology 39(3):222–225PubMedGoogle Scholar
  19. 19.
    Lin JK, Chang SC, Yang SH, Jiang JK, Chen WC, Lin TC (2003) Prognostic value of DNA ploidy patterns of colorectal adenocarcinoma. Hepatogastroenterology 50(54):1927–1932PubMedGoogle Scholar
  20. 20.
    Deans GT, Williamson K, Hamilton P, Heatley M, Arthurs K, Patterson CC, Rowlands BJ, Parks TG, Spence RA (1993) DNA densitometry of colorectal cancer. Gut 34(11):1566–1571PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Araujo SE, Bernardo WM, Habr-Gama A, Kiss DR, Cecconello I (2007) DNA ploidy status and prognosis in colorectal cancer: a meta-analysis of published data. Dis Colon Rectum 50(11):1800–1810. doi: 10.1007/s10350-007-9013-6 PubMedCrossRefGoogle Scholar
  22. 22.
    Walther A, Houlston R, Tomlinson I (2008) Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut 57(7):941–950. doi: 10.1136/gut.2007.135004 PubMedCrossRefGoogle Scholar
  23. 23.
    Beggs AD, Domingo E, McGregor M, Presz M, Johnstone E, Midgley R, Kerr D, Oukrif D, Novelli M, Abulafi M, Hodgson SV, Fadhil W, Ilyas M, Tomlinson IP (2012) Loss of expression of the double strand break repair protein ATM is associated with worse prognosis in colorectal cancer and loss of Ku70 expression is associated with CIN. Oncotarget 3(11):1348–1355PubMedCentralPubMedGoogle Scholar
  24. 24.
    Watanabe T, Kobunai T, Yamamoto Y, Matsuda K, Ishihara S, Nozawa K, Yamada H, Hayama T, Inoue E, Tamura J, Iinuma H, Akiyoshi T, Muto T (2012) Chromosomal instability (CIN) phenotype, CIN high or CIN low, predicts survival for colorectal cancer. J Clin Oncol 30(18):2256–2264. doi: 10.1200/JCO.2011.38.6490 PubMedCrossRefGoogle Scholar
  25. 25.
    Domingo E, Ramamoorthy R, Oukrif D, Rosmarin D, Presz M, Wang H, Pulker H, Lockstone H, Hveem T, Cranston T, Danielsen H, Novelli M, Davidson B, Xu ZZ, Molloy P, Johnstone E, Holmes C, Midgley R, Kerr D, Sieber O, Tomlinson I (2013) Use of multivariate analysis to suggest a new molecular classification of colorectal cancer. J Pathol 229(3):441–448. doi: 10.1002/path.4139 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Laubert T, Bente V, Freitag-Wolf S, Voulgaris H, Oberlander M, Schillo K, Kleemann M, Burk C, Bruch HP, Roblick UJ, Habermann JK (2013) Aneuploidy and elevated CEA indicate an increased risk for metachronous metastasis in colorectal cancer. Int J Color Dis 28(6):767–775. doi: 10.1007/s00384-012-1625-1 CrossRefGoogle Scholar
  27. 27.
    Xynos ID, Kavantzas N, Tsaousi S, Zacharakis M, Agrogiannis G, Kosmas C, Lazaris A, Sarantonis J, Sougioultzis S, Tzivras D, Polyzos A, Patsouris ES, Tsavaris N (2013) Factors influencing survival in stage IV colorectal cancer: the influence of DNA ploidy. ISRN Gastroenterol 2013:490578. doi: 10.1155/2013/490578 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Mouradov D, Domingo E, Gibbs P, Jorissen RN, Li S, Soo PY, Lipton L, Desai J, Danielsen HE, Oukrif D, Novelli M, Yau C, Holmes CC, Jones IT, McLaughlin S, Molloy P, Hawkins NJ, Ward R, Midgely R, Kerr D, Tomlinson IP, Sieber OM (2013) Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations. Am J Gastroenterol 108(11):1785–1793. doi: 10.1038/ajg.2013.292 PubMedCrossRefGoogle Scholar
  29. 29.
    Dewhurst SM, McGranahan N, Burrell RA, Rowan AJ, Gronroos E, Endesfelder D, Joshi T, Mouradov D, Gibbs P, Ward RL, Hawkins NJ, Szallasi Z, Sieber OM, Swanton C (2014) Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov 4(2):175–185. doi: 10.1158/2159-8290.CD-13-0285 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Simons CC, Hughes LA, Smits KM, Khalid-de Bakker CA, de Bruine AP, Carvalho B, Meijer GA, Schouten LJ, van den Brandt PA, Weijenberg MP, van Engeland M (2013) A novel classification of colorectal tumors based on microsatellite instability, the CpG island methylator phenotype and chromosomal instability: implications for prognosis. Ann Oncol 24(8):2048–2056. doi: 10.1093/annonc/mdt076 PubMedCrossRefGoogle Scholar
  31. 31.
    Auer GU, Caspersson TO, Wallgren AS (1980) DNA content and survival in mammary carcinoma. Anal Quant Cytol 2(3):161–165PubMedGoogle Scholar
  32. 32.
    Armitage NC, Ballantyne KC, Sheffield JP, Clarke P, Evans DF, Hardcastle JD (1991) A prospective evaluation of the effect of tumor cell DNA content on recurrence in colorectal cancer. Cancer 67(10):2599–2604PubMedCrossRefGoogle Scholar
  33. 33.
    Chen HS, Sheen-Chen SM, Lu CC (2002) DNA index and S-phase fraction in curative resection of colorectal adenocarcinoma: analysis of prognosis and current trends. World J Surg 26(5):626–630. doi: 10.1007/s00268-001-0280-4 PubMedCrossRefGoogle Scholar
  34. 34.
    Albe X, Vassilakos P, Helfer-Guarnori K, Givel JC, de Quay N, Suardet L, Eliason JF, Odartchenko N (1990) Independent prognostic value of ploidy in colorectal cancer. A prospective study using image cytometry. Cancer 66(6):1168–1175PubMedCrossRefGoogle Scholar
  35. 35.
    Bondi J, Pretorius M, Bukholm I, Danielsen H (2009) Large-scale genomic instability in colon adenocarcinomas and correlation with patient outcome. APMIS 117(10):730–736. doi: 10.1111/j.1600-0463.2009.02527.x PubMedCrossRefGoogle Scholar
  36. 36.
    Koha M, Wikstrom B, Brismar B (1992) Colorectal carcinoma. DNA ploidy pattern and prognosis with reference to tumor DNA heterogeneity. Anal Quant Cytol Histol 14(5):367–372PubMedGoogle Scholar
  37. 37.
    Sampedro A, Urdiales G, Martinez-Nistal A, Riera J, Hardisson D (1996) Prognostic value of DNA image cytometry in colorectal carcinoma. Anal Quant Cytol Histol 18(3):214–220PubMedGoogle Scholar
  38. 38.
    Armitage NC, Ballantyne KC, Evans DF, Clarke P, Sheffield J, Hardcastle JD (1990) The influence of tumour cell DNA content on survival in colorectal cancer: a detailed analysis. Br J Cancer 62(5):852–856PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Chapman MA, Hardcastle JD, Armitage NC (1995) Five-year prospective study of DNA tumor ploidy and colorectal cancer survival. Cancer 76(3):383–387PubMedCrossRefGoogle Scholar
  40. 40.
    Tomoda H, Baba H, Saito T, Wada S (1998) DNA index as a significant predictor of recurrence in colorectal cancer. Dis Colon Rectum 41(3):286–290PubMedCrossRefGoogle Scholar
  41. 41.
    Yamazoe Y, Maetani S, Nishikawa T, Onodera H, Tobe T, Imamura M (1994) The prognostic role of the DNA ploidy pattern in colorectal cancer analysis using paraffin-embedded tissue by an improved method. Surg Today 24(1):30–36PubMedCrossRefGoogle Scholar
  42. 42.
    Ahnen DJ, Feigl P, Quan G, Fenoglio-Preiser C, Lovato LC, Bunn PA Jr, Stemmerman G, Wells JD, Macdonald JS, Meyskens FL Jr (1998) Ki-ras mutation and p53 overexpression predict the clinical behavior of colorectal cancer: a Southwest Oncology Group study. Cancer Res 58(6):1149–1158PubMedGoogle Scholar
  43. 43.
    Tang R, Ho YS, You YT, Hsu KC, Chen JS, Changchien CR, Wang JY (1995) Prognostic evaluation of DNA flow cytometric and histopathologic parameters of colorectal cancer. Cancer 76(10):1724–1730PubMedCrossRefGoogle Scholar
  44. 44.
    Rowley S, Newbold KM, Gearty J, Keighley MR, Donovan IA, Neoptolemos JP (1990) Comparison of deoxyribonucleic acid ploidy and nuclear expressed p62 c-myc oncogene in the prognosis of colorectal cancer. World J Surg 14(4):545–550, discussion 551 PubMedCrossRefGoogle Scholar
  45. 45.
    Rognum TO, Lund E, Meling GI, Langmark F (1991) Near diploid large bowel carcinomas have better five-year survival than aneuploid ones. Cancer 68(5):1077–1081PubMedCrossRefGoogle Scholar
  46. 46.
    Chang SC, Lin JK, Yang SH, Wang HS, Li AF, Chi CW (2006) Relationship between genetic alterations and prognosis in sporadic colorectal cancer. Int J Cancer 118(7):1721–1727. doi: 10.1002/ijc.21563 PubMedCrossRefGoogle Scholar
  47. 47.
    Fausel RE, Burleigh W, Kaminsky DB (1990) DNA quantification in colorectal carcinoma using flow and image analysis cytometry. Anal Quant Cytol Histol 12(1):21–27PubMedGoogle Scholar
  48. 48.
    Bottger TC, Gabbert HE, Stockle M, Wellek S, Hils R, Heintz A, Junginger T (1992) DNA image cytometry: a prognostic tool in rectal cancer? Dis Colon Rectum 35(5):436–443PubMedCrossRefGoogle Scholar
  49. 49.
    Venkatesh KS, Weingart DJ, Ramanujam PJ (1994) Comparison of double and single parameters in DNA analysis for staging and as a prognostic indicator in patients with colon and rectal carcinoma. Dis Colon Rectum 37(11):1142–1147PubMedCrossRefGoogle Scholar
  50. 50.
    Yamamoto T, Matsumoto K, Iriyama K (1998) Prognostic significance of the DNA index in a colorectal cancer. Surg Today 28(8):792–796PubMedCrossRefGoogle Scholar
  51. 51.
    Cosimelli M, D’Agnano I, Tedesco M, D’Angelo C, Botti C, Giannarelli D, Vasselli S, Cavaliere F, Zupi G, Cavaliere R (1998) The role of multiploidy as unfavorable prognostic variable in colorectal cancer. Anticancer Res 18(3B):1957–1965PubMedGoogle Scholar
  52. 52.
    Foggi E, Carbognani P (1993) The value of ploidy in the prognosis of the colorectal cancer. Acta Biomed Ateneo Parmense 64(5–6):185–194PubMedGoogle Scholar
  53. 53.
    Geido E, Sciutto A, Rubagotti A, Oliani C, Monaco R, Risio M, Giaretti W (2002) Combined DNA flow cytometry and sorting with k-ras2 mutation spectrum analysis and the prognosis of human sporadic colorectal cancer. Cytometry 50(4):216–224. doi: 10.1002/cyto.10109 PubMedCrossRefGoogle Scholar
  54. 54.
    Halvorsen TB, Johannesen E (1990) DNA ploidy, tumour site, and prognosis in colorectal cancer. A flow cytometric study of paraffin-embedded tissue. Scand J Gastroenterol 25(2):141–148PubMedCrossRefGoogle Scholar
  55. 55.
    Baretton G, Gille J, Oevermann E, Lohrs U (1991) Flow-cytometric analysis of the DNA-content in paraffin-embedded tissue from colorectal carcinomas and its prognostic significance. Virchows Arch B Cell Pathol Incl Mol Pathol 60(2):123–131PubMedCrossRefGoogle Scholar
  56. 56.
    Jiang B, Liu CG, Wang MW, Zhao DH, Li Y, Ji XL (1992) DNA content and its relationship with pathology and prognosis of colorectal carcinoma. Chin Med J (Engl) 105(3):241–246Google Scholar
  57. 57.
    Russo A, Bazan V, Plaja S, Leonardi P, Bazan P (1991) Patterns of DNA-ploidy in operable colorectal carcinoma: a prospective study of 100 cases. J Surg Oncol 48(1):4–10PubMedCrossRefGoogle Scholar
  58. 58.
    Salud A, Porcel JM, Raikundalia B, Camplejohn RS, Taub NA (1999) Prognostic significance of DNA ploidy, S-phase fraction, and P-glycoprotein expression in colorectal cancer. J Surg Oncol 72(3):167–174. doi: 10.1002/(SICI)1096-9098(199911)72:3<167::AID-JSO10>3.0.CO;2-H PubMedCrossRefGoogle Scholar
  59. 59.
    Silvestrini R, D’Agnano I, Faranda A, Costa A, Zupi G, Cosimelli M, Quagliuolo V, Giannarelli D, Gennari L, Cavaliere R (1993) Flow cytometric analysis of ploidy in colorectal cancer: a multicentric experience. Br J Cancer 67(5):1042–1046PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Tagawa Y, Yasutake T, Sawai T, Nanashima A, Jibiki M, Morinaga M, Akama F, Nakagoe T, Ayabe H (1997) Clinical and pathological significance of numerical aberrations of chromosomes 11 and 17 in colorectal neoplasms. Clin Cancer Res 3(9):1587–1592PubMedGoogle Scholar
  61. 61.
    Tonouchi H, Matsumoto K, Kinoshita T, Itoh H, Suzuki H (1998) Prognostic value of DNA ploidy patterns of colorectal adenocarcinoma: univariate and multivariate analysis. Dig Surg 15(6):687–692PubMedCrossRefGoogle Scholar
  62. 62.
    Kay EW, Mulcahy HE, Curran B, O’Donoghue DP, Leader M (1996) An image analysis study of DNA content in early colorectal cancer. Eur J Cancer 32A(4):612–616PubMedCrossRefGoogle Scholar
  63. 63.
    Takanishi DM Jr, Hart J, Covarelli P, Chappell R, Michelassi F (1996) Ploidy as a prognostic feature in colonic adenocarcinoma. Arch Surg 131(6):587–592PubMedCrossRefGoogle Scholar
  64. 64.
    Robey-Cafferty SS, el-Naggar AK, Grignon DJ, Cleary KR, Ro JY (1990) Histologic parameters and DNA ploidy as predictors of survival in stage B adenocarcinoma of colon and rectum. Mod Pathol 3(3):261–266PubMedGoogle Scholar
  65. 65.
    Sinicrope FA, Hart J, Michelassi F, Lee JJ (1995) Prognostic value of bcl-2 oncoprotein expression in stage II colon carcinoma. Clin Cancer Res 1(10):1103–1110PubMedGoogle Scholar
  66. 66.
    Visscher DW, Zarbo RJ, Ma CK, Sakr WA, Crissman JD (1990) Flow cytometric DNA and clinicopathologic analysis of Dukes’ A&B colonic adenocarcinomas: a retrospective study. Mod Pathol 3(6):709–712PubMedGoogle Scholar
  67. 67.
    Tang R, Ho YS, Chen HH, See LC, Wang JY (1998) Different prognostic effect of postoperative chemoradiation therapy on diploid and nondiploid high-risk rectal cancers. Dis Colon Rectum 41(12):1494–1499PubMedCrossRefGoogle Scholar
  68. 68.
    Guerra A, Borda F, Javier Jimenez F, Martinez-Penuela JM, Larrinaga B (1998) Multivariate analysis of prognostic factors in resected colorectal cancer: a new prognostic index. Eur J Gastroenterol Hepatol 10(1):51–58PubMedCrossRefGoogle Scholar
  69. 69.
    Nori D, Merimsky O, Samala E, Saw D, Cortes E, Chen E, Turner JW (1995) Tumor ploidy as a risk factor for disease recurrence and short survival in surgically-treated Dukes’ B2 colon cancer patients. J Surg Oncol 59(4):239–242PubMedCrossRefGoogle Scholar
  70. 70.
    Ikeguchi M, Sakatani T, Endo K, Makino M, Kaibara N (1999) Computerized nuclear morphometry is a useful technique for evaluating the high metastatic potential of colorectal adenocarcinoma. Cancer 86(10):1944–1951. doi: 10.1002/(SICI)1097-0142(19991115)86:10<1944::AID-CNCR10>3.0.CO;2-2 PubMedCrossRefGoogle Scholar
  71. 71.
    Sun XF (2006) Clinicopathological and biological features of DNA tetraploid colorectal cancers. Cancer J 12(6):501–506PubMedCrossRefGoogle Scholar
  72. 72.
    Purdie CA, Piris J (2000) Histopathological grade, mucinous differentiation and DNA ploidy in relation to prognosis in colorectal carcinoma. Histopathology 36(2):121–126PubMedCrossRefGoogle Scholar
  73. 73.
    Bosari S, Moneghini L, Graziani D, Lee AK, Murray JJ, Coggi G, Viale G (1995) bcl-2 oncoprotein in colorectal hyperplastic polyps, adenomas, and adenocarcinomas. Hum Pathol 26(5):534–540PubMedCrossRefGoogle Scholar
  74. 74.
    Duesberg P (1999) Are centrosomes or aneuploidy the key to cancer? Science 284(5423):2091–2092PubMedCrossRefGoogle Scholar
  75. 75.
    Marx J (2002) Debate surges over the origins of genomic defects in cancer. Science 297(5581):544–546. doi: 10.1126/science.297.5581.544 PubMedCrossRefGoogle Scholar
  76. 76.
    Habermann J, Lenander C, Roblick UJ, Kruger S, Ludwig D, Alaiya A, Freitag S, Dumbgen L, Bruch HP, Stange E, Salo S, Tryggvason K, Auer G, Schimmelpenning H (2001) Ulcerative colitis and colorectal carcinoma: DNA-profile, laminin-5 gamma2 chain and cyclin A expression as early markers for risk assessment. Scand J Gastroenterol 36(7):751–758PubMedCrossRefGoogle Scholar
  77. 77.
    Torresan F, Zanella L, Mattarozzi A, Quiroga A, Bacchini P, Bertoni F, Gandolfi L (1994) DNA analysis with flow cytometry and image cytometry in colorectal polyps. Surg Endosc 8(12):1412–1416PubMedCrossRefGoogle Scholar
  78. 78.
    Saccani Jotti G, Fontanesi M, Orsi N, Sarli L, Pietra N, Peracchia A, Sansebastiano G, Becchi G (1995) DNA content in human colon cancer and non-neoplastic adjacent mucosa. Int J Biol Markers 10(1):11–16PubMedGoogle Scholar
  79. 79.
    Kearney TJ, Price EA, Lee S, Silberman AW (1993) Tumor aneuploidy in young patients with colorectal cancer. Cancer 72(1):42–45PubMedCrossRefGoogle Scholar
  80. 80.
    Zarbo RJ, Nakhleh RE, Brown RD, Kubus JJ, Ma CK, Mackowiak P (1997) Prognostic significance of DNA ploidy and proliferation in 309 colorectal carcinomas as determined by two-color multiparametric DNA flow cytometry. Cancer 79(11):2073–2086. doi: 10.1002/(SICI)1097-0142(19970601)79:11<2073::AID-CNCR4>3.0.CO;2-Q PubMedCrossRefGoogle Scholar
  81. 81.
    Schillaci A, Tirindelli DD, Ferri M, Teodori L, Mauro F, Nicolanti V, Stipa S (1990) Flow cytometric analysis in colorectal carcinoma: prognostic significance of cellular DNA content. Int J Color Dis 5(4):223–227CrossRefGoogle Scholar
  82. 82.
    Bendardaf R, Lamlum H, Ristamaki R, Algars A, Collan Y, Pyrhonen S (2004) Response to chemotherapy (irinotecan plus 5-fluorouracil) in colorectal carcinoma can be predicted by tumour DNA content. Oncology 66(1):46–52. doi: 10.1159/000076334 PubMedCrossRefGoogle Scholar
  83. 83.
    Danova M, Giordano M, Erba E, Palmeri S, Candiloro V, Riccardi A, Ucci G, Mazzini G, D’Incalci M, Ascari E (1992) Flow cytometric analysis of multidrug-resistance-associated antigen (P-glycoprotein) and DNA ploidy in human colon cancer. J Cancer Res Clin Oncol 118(8):575–580PubMedCrossRefGoogle Scholar
  84. 84.
    Zaloudik J, Vagunda V, Drahokoupilova M, Janakova L, Talac R, Kalabis J, Sheard M (1997) Biomarkers for predicting response to regional chemo-immunotherapy in liver metastases from colorectal carcinoma. Int J Immunopharmacol 19(9–10):481–485PubMedCrossRefGoogle Scholar
  85. 85.
    Garrity MM, Burgart LJ, Mahoney MR, Windschitl HE, Salim M, Wiesenfeld M, Krook JE, Michalak JC, Goldberg RM, O’Connell MJ, Furth AF, Sargent DJ, Murphy LM, Hill E, Riehle DL, Meyers CH, Witzig TE (2004) Prognostic value of proliferation, apoptosis, defective DNA mismatch repair, and p53 overexpression in patients with resected Dukes’ B2 or C colon cancer: a North Central Cancer Treatment Group Study. J Clin Oncol 22(9):1572–1582. doi: 10.1200/JCO.2004.10.042 PubMedCrossRefGoogle Scholar
  86. 86.
    Deans GT, Williamson K, Heatley M, Hamilton P, Arthurs K, Crockard A, Patterson CC, Rowlands BJ, Parks G, Spence RA (1993) The role of flow cytometry in carcinoma of the colon and rectum. Surg Gynecol Obstet 177(4):377–382PubMedGoogle Scholar
  87. 87.
    Risques RA, Moreno V, Ribas M, Marcuello E, Capella G, Peinado MA (2003) Genetic pathways and genome-wide determinants of clinical outcome in colorectal cancer. Cancer Res 63(21):7206–7214PubMedGoogle Scholar
  88. 88.
    Fallenius AG, Franzen SA, Auer GU (1988) Predictive value of nuclear DNA content in breast cancer in relation to clinical and morphologic factors. A retrospective study of 227 consecutive cases. Cancer 62(3):521–530PubMedCrossRefGoogle Scholar
  89. 89.
    Bardi G, Fenger C, Johansson B, Mitelman F, Heim S (2004) Tumor karyotype predicts clinical outcome in colorectal cancer patients. J Clin Oncol 22(13):2623–2634. doi: 10.1200/JCO.2004.11.014 PubMedCrossRefGoogle Scholar
  90. 90.
    Sinicrope FA, Hart J, Hsu HA, Lemoine M, Michelassi F, Stephens LC (1999) Apoptotic and mitotic indices predict survival rates in lymph node-negative colon carcinomas. Clin Cancer Res 5(7):1793–1804PubMedGoogle Scholar
  91. 91.
    Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, Somerfield MR, Hayes DF, Bast RC Jr (2006) ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 24(33):5313–5327. doi: 10.1200/JCO.2006.08.2644 PubMedCrossRefGoogle Scholar
  92. 92.
    Silvestrini R (2000) Relevance of DNA-ploidy as a prognostic instrument for solid tumors. Ann Oncol 11(3):259–261PubMedCrossRefGoogle Scholar
  93. 93.
    Laubert T, Bente V, Freitag-Wolf S, Voulgaris H, Oberlander M, Schillo K, Kleemann M, Burk C, Bruch HP, Roblick UJ, Habermann JK (2013) Aneuploidy and elevated CEA indicate an increased risk for metachronous metastasis in colorectal cancer. Int J Color Dis. doi: 10.1007/s00384-012-1625-1 Google Scholar
  94. 94.
    Koha M, Brismar B, Wikstrom B (1992) DNA content in primary tumours and lymph node metastases in colorectal adenocarcinoma. APMIS 100(7):640–644PubMedCrossRefGoogle Scholar
  95. 95.
    Soreide K, Slewa A, Stokkeland PJ, van Diermen B, Janssen EA, Soreide JA, Baak JP, Korner H (2009) Microsatellite instability and DNA ploidy in colorectal cancer: potential implications for patients undergoing systematic surveillance after resection. Cancer 115(2):271–282. doi: 10.1002/cncr.24024
  96. 96.
    Cohn KH, Ornstein DL, Wang F, LaPaix FD, Phipps K, Edelsberg C, Zuna R, Mott LA, Dunn JL (1997) The significance of allelic deletions and aneuploidy in colorectal carcinoma. Results of a 5-year follow-up study. Cancer 79(2):233–244Google Scholar
  97. 97.
    Minsky BD, Enker WE, Cohen AM, Lauwers G (1995) Clinicopathologic features in rectal cancer treated by local excision and postoperative radiation therapy. Radiat Med 13(5):235–241Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tilman Laubert
    • 1
  • Sandra Freitag-Wolf
    • 2
  • Michael Linnebacher
    • 3
  • Alexandra König
    • 4
  • Brigitte Vollmar
    • 5
  • Jens K. Habermann
    • 1
  • on behalf of the North German Tumorbank of Colorectal Cancer (ColoNet) consortium
  1. 1.Section of Translational Surgical Oncology and Biobanking, Department of SurgeryUniversity of Lübeck and University Medical Center Schleswig-HolsteinLübeckGermany
  2. 2.Institute of Medical Informatics and StatisticsUniversity Medical Center Schleswig-HolsteinKielGermany
  3. 3.Devision of Molecular Oncology and Immunotherapy, Department of General SurgeryUniversity of RostockRostockGermany
  4. 4.Department of General, Visceral and Thoracic SurgeryUniversity Clinic Hamburg-EppendorfHamburgGermany
  5. 5.Institute for Experimental Surgery and Central Animal Research FacilityUniversity of RostockRostockGermany

Personalised recommendations