Advertisement

Vascular anatomy of the small intestine—a comparative anatomic study on humans and pigs

  • Klaus-Thilo von Trotha
  • Nick Butz
  • Jochen Grommes
  • Marcel Binnebösel
  • Natascha Charalambakis
  • Georg Mühlenbruch
  • Volker Schumpelick
  • Uwe Klinge
  • Ulf P. Neumann
  • Andreas Prescher
  • Carsten J. Krones
Original Article

Abstract

Background

Porcine models are well established for studying intestinal anastomotic healing. In this study, we aimed to clarify the anatomic differences between human and porcine small intestines. Additionally, we investigated the influences of longitudinal and circular sutures on human small intestine perfusion.

Methods

Intestines were obtained from human cadavers (n = 8; small intestine, n = 51) and from pigs (n = 10; small intestine, n = 60). Vascularization was visualized with mennige gelatin perfusion and high-resolution mammography. Endothelial cell density was analyzed with immunohistochemistry and factor VIII antibodies. We also investigated the influence of suture techniques (circular anastomoses, n = 19; longitudinal sutures, n = 15) on vascular perfusion.

Results

Only human samples showed branching of mesenteric vessels. Compared to the pig, human vessels showed closer connections at the entrance to the bowel wall (p = 0.045) and higher numbers of intramural anastomoses (p < 0.001). Porcine main vessels formed in multifilament-like vessel bundles and displayed few intramural vessel anastomoses. Circular anastomoses induced a circular perfusion defect at the bowel wall; longitudinal anastomoses induced significantly smaller perfusion defects (p < 0.001). Both species showed higher vascular density in the jejunum than in the ileum (p < 0.001). Human samples showed similar vascular density within the jejunum (p = 0.583) and higher density in the ileum (p < 0.001) compared to pig samples.

Conclusion

The results showed significant differences between human and porcine intestines. The porcine model remains the standard for studies on anastomotic healing because it is currently the only viable model for studying anastomosis and wound healing. Nevertheless, scientific interpretations must consider the anatomic differences between humans and porcine intestines.

Keywords

Bowel perfusion Porcine anatomy Human anatomy Anastomotic healing 

References

  1. 1.
    Federal Statistical Office (2004) Health-medical costs 2002. Federal Statistical Office—Press Office WiesbadenGoogle Scholar
  2. 2.
    Federal Statistical Office (2004) Diagnosisdata of hospital patients 2002. Federal Statistical Office—Pressoffice WiesbadenGoogle Scholar
  3. 3.
    Cihan A, Acun Z, Ucan BH, Numanoglu VK, Armutcu F, Gurel A, Ulukent SC (2003) Comparison of the experimental intestinal anastomoses performed by different surgeons. Hepatogastroenterology 50(Suppl 2):ccxxxv–ccxxxviiPubMedGoogle Scholar
  4. 4.
    Stumpf M, Klinge U, Mertens PR (2004) Anastomotic leakage in the gastrointestinal tract-repair and prognosis. Chirurg 75:1056–1062CrossRefPubMedGoogle Scholar
  5. 5.
    Willis S, Stumpf M (2004) Leakages after surgery of the lower gastrointestinal tract. Chirurg 75:1071–1078CrossRefPubMedGoogle Scholar
  6. 6.
    Stumpf M, Klinge U, Wilms A, Zabrocki R, Rosch R, Junge K, Krones C, Schumpelick V (2005) Changes of the extracellular matrix as a risk factor for anastomotic leakage after large bowel surgery. Surgery 137:229–234CrossRefPubMedGoogle Scholar
  7. 7.
    Press Office Helios clinics—Fulda (2002) Helios Kliniken Gruppe Kompetenz in Medizin. Annual medical report 2001Google Scholar
  8. 8.
    Stumpf M, Cao W, Klinge U, Klosterhalfen B, Kasperk R, Schumpelick V (2002) Collagen distribution and expression of matrix metalloproteinases 1 and 13 in patients with anastomotic leakage after large-bowel surgery. Langenbeck’s Arch Surg 386:502–506CrossRefGoogle Scholar
  9. 9.
    Akasu T, Takawa M, Yamamoto S, Yamaguchi T, Fujita S, Moriya Y (2010) Risk factors for anastomotic leakage following intersphincteric resection for very low rectal adenocarcinoma. J Gastrointest Surg 14:104–111CrossRefPubMedGoogle Scholar
  10. 10.
    Kube R, Mroczkowski P, Steinert R, Sahm M, Schmidt U, Gastinger I, Lippert H (2009) Anastomotic leakage following bowel resections for colon cancer: multivariate analysis of risk factors. Chirurg 80:1153–1159CrossRefPubMedGoogle Scholar
  11. 11.
    Stumpf M, Junge K, Wendlandt M, Krones C, Ulmer F, Klinge U, Schumpelick V (2009) Risk factors for anastomotic leakage after colorectal surgery. Zentralbl Chir 134:242–248CrossRefPubMedGoogle Scholar
  12. 12.
    Senagore A, Milsom JW, Walshaw RK, Dunstan R, Mazier WP, Chaudry IH (1990) Intramural pH: a quantitative measurement for predicting colorectal anastomotic healing. Dis Colon Rectum 33:175–179CrossRefPubMedGoogle Scholar
  13. 13.
    Sorensen LT, Jorgensen T, Kirkeby LT, Skovdal J, Vennits B, Wille-Jorgensen P (1999) Smoking and alcohol abuse are major risk factors for anastomotic leakage in colorectal surgery. Br J Surg 86:927–931CrossRefPubMedGoogle Scholar
  14. 14.
    Vignali A, Gianotti L, Braga M, Radaelli G, Malvezzi L, Di C (2000) V Altered microperfusion at the rectal stump is predictive for rectal anastomotic leak. Dis Colon Rectum 43:76–82CrossRefPubMedGoogle Scholar
  15. 15.
    Lang J, Heichele J (1982) Über die Gefäße des Dünndarms. Morphol Med 2:207Google Scholar
  16. 16.
    Jonsson T, Hogstrom H (1992) Effect of suture technique on early healing of intestinal anastomoses in rats. Eur J Surg 158:267–270PubMedGoogle Scholar
  17. 17.
    Willis S, Holzl F, Krones CJ, Tittel A, Schumpelick V (2006) Evaluation of anastomotic microcirculation after low anterior rectal resection: an experimental study with different reconstruction forms in dogs. Tech Coloproctol 10:222–226CrossRefPubMedGoogle Scholar
  18. 18.
    Michels NA, Siddhardt P, Kornblith PL, Parke WW (1963) The variant blood supply to the small and large intestines: its import in regional resections. J Int Coll Surg 39:127–170Google Scholar
  19. 19.
    Vandamme JP, Bonte J (1982) A new look at the blood supply of the ileocolic angle. Acta Anat (Basel) 113:1–14CrossRefGoogle Scholar
  20. 20.
    von Ruggeri ZM (1993) Willebrand factor and fibrinogen. Curr Opin Cell Biol 5:898–906CrossRefPubMedGoogle Scholar
  21. 21.
    von Rodeghiero F (2002) Willebrand disease: still an intriguing disorder in the era of molecular medicine. Haemophilia 8:292–300CrossRefPubMedGoogle Scholar
  22. 22.
    Vignali A, Fazio VW, Lavery IC, Milsom JW, Church JM, Hull TL, Strong SA, Oakley JR (1997) Factors associated with the occurrence of leaks in stapled rectal anastomoses: a review of 1,014 patients. J Am Coll Surg 185:105–113CrossRefPubMedGoogle Scholar
  23. 23.
    Hogstrom H, Haglund U, Zederfeldt B (1985) Suture technique and early breaking strength of intestinal anastomoses and laparotomy wounds. Acta Chir Scand 151:441–443PubMedGoogle Scholar
  24. 24.
    Waninger J, Kauffmann GW, Shah IA, Farthmann EH (1992) Influence of the distance between interrupted sutures and the tension of sutures on the healing of experimental colonic anastomoses. Am J Surg 163:319–323CrossRefPubMedGoogle Scholar
  25. 25.
    Billings PJ, Foster ME, Leaper DJ (1986) A clinical and experimental study of colostomy blood flow and healing after closure. Int J Colorectal Dis 1:108–112CrossRefPubMedGoogle Scholar
  26. 26.
    Thompson JS, Bragg LE, West WW (1990) Serum enzyme levels during intestinal ischemia. Ann Surg 211:369–373CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Kurland B, Brandt LJ, Delany HM (1992) Diagnostic tests for intestinal ischemia. Surg Clin N Am 72:85–105PubMedGoogle Scholar
  28. 28.
    Mizock BA, Falk JL (1992) Lactic acidosis in critical illness. Crit Care Med 20:80–93CrossRefPubMedGoogle Scholar
  29. 29.
    Sailer M, Debus ES, Fuchs KH, Beyerlein J, Thiede A (2000) Comparison of anastomotic microcirculation in coloanal J-pouches versus straight and side-to-end coloanal reconstruction: an experimental study in the pig. Int J Color Dis 15:114–117CrossRefGoogle Scholar
  30. 30.
    Caglayan F, Caglayan O, Gunel E, Elcuman Y, Cakmak M (2002) Intestinal ischemia–reperfusion and plasma enzyme levels. Pediatr Surg Int 18:255–257CrossRefPubMedGoogle Scholar
  31. 31.
    Pargger H, Staender S, Studer W, Schellscheidt O, Mihatsch MJ, Scheidegger D, Skarvan K (1997) Occlusive mesenteric ischemia and its effects on jejunal intramucosal pH, mesenteric oxygen consumption and oxygen tensions from surfaces of the jejunum in anesthetized pigs. Intensive Care Med 23:91–99CrossRefPubMedGoogle Scholar
  32. 32.
    Brandt LJ, Boley SJ (2000) AGA technical review on intestinal ischemia. American Gastrointestinal Association. Gastroenterology 118:954–968CrossRefPubMedGoogle Scholar
  33. 33.
    Sato A, Kuwabara Y, Sugiura M, Seo Y, Fujii Y (1999) Intestinal energy metabolism during ischemia and reperfusion. J Surg Res 82:261–267CrossRefPubMedGoogle Scholar
  34. 34.
    Hansen HH, Stelzner F (1975) Surgical anatomy of the blood supply of the colon (author’s transl). Langenbecks Arch Chir 340:63–74CrossRefPubMedGoogle Scholar
  35. 35.
    Spalding H, Heath T (1987) Arterial supply to the pig intestine: an unusual pattern in the mesentery. Anat Rec 218:27–29CrossRefPubMedGoogle Scholar
  36. 36.
    Spalding HJ, Heath TJ (1986) Blood vessels of lymph nodes in the pig. Res Vet Sci 41:196–199PubMedGoogle Scholar
  37. 37.
    Sommerova J (1980) Contribution to the comparative anatomy of jejunoileal arcades in mammals. Folia Morphol (Praha) 28:282–285Google Scholar
  38. 38.
    Chiba T, Boles ET Jr (1984) Studies on the relationship between the number of arteriae rectae of intestinal artery and intestinal length. Tohoku J Exp Med 143:27–31CrossRefPubMedGoogle Scholar
  39. 39.
    Semeraro D, Davies JD (1986) The arterial blood supply of human inguinal and mesenteric lymph nodes. J Anat 144:221–233PubMedCentralPubMedGoogle Scholar
  40. 40.
    Schummer A, Wilkens H, Vollmershaus B, Habermehl KH (1981) The anatomy of domestic animals. Parey, BerlinGoogle Scholar
  41. 41.
    Jodal M, Lundgren O (1986) Countercurrent mechanisms in the mammalian gastrointestinal tract. Gastroenterology 91:225–241PubMedGoogle Scholar
  42. 42.
    Myers MB, Cherry G (1969) Use of vital dyes in the evaluation of the blood supply of the colon. Surg Gynecol Obstet 128:97–102PubMedGoogle Scholar
  43. 43.
    Hansen HH, Heine H (1976) Blood supply and histophysiology of the appendices epiploicae (author’s transl). Langenbecks Arch Chir 340:191–197CrossRefPubMedGoogle Scholar
  44. 44.
    Al-Fallouji MA, Tagart RE (1985) The surgical anatomy of the colonic intramural blood supply and its influence on colorectal anastomosis. J R Coll Surg Edinb 30:380–385PubMedGoogle Scholar
  45. 45.
    Kleinfeld G, Gump FE (1960) Complications of colotomy and polypectomy. Surg Gynecol Obstet 111:726–728PubMedGoogle Scholar
  46. 46.
    SWINTON NW, WEAKLEY FL (1963) Complications of colotomy and colonoscopy. Dis Colon Rectum 6:50–53CrossRefPubMedGoogle Scholar
  47. 47.
    Knutson CO, Schrock LG, Polk HC Jr (1974) Polypoid lesions of the proximal colon: comparison of experiences with removal at laparotomy and by colonoscopy. Ann Surg 179:657–662CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Klaus-Thilo von Trotha
    • 2
  • Nick Butz
    • 1
  • Jochen Grommes
    • 2
  • Marcel Binnebösel
    • 1
  • Natascha Charalambakis
    • 1
  • Georg Mühlenbruch
    • 3
  • Volker Schumpelick
    • 1
  • Uwe Klinge
    • 1
    • 4
  • Ulf P. Neumann
    • 1
  • Andreas Prescher
    • 5
  • Carsten J. Krones
    • 1
  1. 1.Department of SurgeryRWTH Aachen University HospitalAachenGermany
  2. 2.Department of Vascular SurgeryRWTH Aachen University HospitalAachenGermany
  3. 3.Department of Diagnostic RadiologyRWTH Aachen University HospitalAachenGermany
  4. 4.Applied Medical EngineeringHelmholtz Institute RWTH AachenAachenGermany
  5. 5.Institute of Anatomy, Medical FacultyRWTH Aachen UniversityAachenGermany

Personalised recommendations