International Journal of Colorectal Disease

, Volume 29, Issue 2, pp 139–145 | Cite as

Familial pancreatic cancer—status quo

  • Volker Fendrich
  • Peter Langer
  • Detlef K. Bartsch



Familial pancreatic cancer (FPC) is defined by families with at least two first-degree relatives with confirmed pancreatic ductal adenocarcinoma (PDAC) that do not fulfill the criteria of other inherited tumor syndromes with an increased risk for the development of PDAC, such as hereditary pancreatitis or hereditary breast and ovarian cancer. FPC is mostly autosomal dominant inherited and presents with a heterogeneous phenotype. Although the major gene defect has not yet been identified, some important germline mutations in the BRCA2-, PALB2-, and ATM-genes are causative in some FPC families.

FPC screening

It is suggested by experts to include high-risk individuals in a screening program with a multidisciplinary approach under research protocol conditions. However, neither biomarkers nor reliable imaging modalities for the detection of high-grade precursor lesions are yet available. Most screening programs are currently based on endoscopic ultrasound and magnetic resonance imaging, and first data demonstrated that precursor lesions (pancreatic intraepithelial neoplasia, intraductal papillary mucinous neoplasm) of PDAC can be identified. Timing and extent of surgery are still a matter of debate.

Scope of the review

The present review focuses on the clinical phenotype of FPC, its histopathological characteristics, known underlying genetic changes, genetic counseling, and screening.


Familial pancreatic cancer Mutation Genetics Screening PanIN IPMN Pancreatectomy 



Funding for this study was through a grant of the Deutsche Krebshilfe (no. 109126) to VF, PL, and DKB.


  1. 1.
    Ehrenthal D, Haeger L, Griffin T, Compton C (1987) Familial pancreatic adenocarcinoma in three generations. A case report and a review of the literature. Cancer 59:1661–1664PubMedCrossRefGoogle Scholar
  2. 2.
    MacDermott RP, Kramer P (1973) Adenocarcinoma of the pancreas in four siblings. Gastroenterology 65:137–139PubMedGoogle Scholar
  3. 3.
    Reimer RR, Fraumeni JF Jr, Ozols RF, Bender R (1977) Pancreatic cancer in father and son. Lancet 23:1911Google Scholar
  4. 4.
    Lynch HT, Lanspa SJ, Fitzgibbons RJ Jr, Smyrk T, Fitzsimmons ML, McClellan J (1989) Familial pancreatic cancer (part 1): genetic pathology review. Nebr Med J 74:109–112PubMedGoogle Scholar
  5. 5.
    Hruban RH, Petersen GM, Ha PK, Kern SE (1998) Genetics of pancreatic cancer. From genes to families. Surg Oncol Clin N Am 7:1–23PubMedGoogle Scholar
  6. 6.
    Applebaum SE, Kant JA, Whitcomb DC, Ellis IH (2000) Genetic testing. Counselling, laboratory, and regulatory issues and the EUROPAC protocol for ethical research in multicenter studies of inherited pancreatic diseases. Med Clin North Am 84:575–588PubMedCrossRefGoogle Scholar
  7. 7.
    Bartsch DK et al (2001) Update of familial pancreatic cancer in Germany. Pancreatology 1:510–516PubMedCrossRefGoogle Scholar
  8. 8.
    Del Chiaro M et al (2010) Familial pancreatic cancer in Italy. Risk assessment, screening programs and clinical approach: a position paper from the Italian registry. Dig Liver Dis 42:597–605PubMedCrossRefGoogle Scholar
  9. 9.
    Hruban RH, Canto MI, Goggins M, Schulik R, Klein AP (2010) Update on familial pancreatic cancer. Adv Surg 44:293–311PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Del Chiaro M et al (2007) Cancer risk among the relatives of patients with pancreatic ductal adenocarcinoma. Pancreatology 7:459–469PubMedCrossRefGoogle Scholar
  11. 11.
    Bartsch DK et al (2004) Prevalence of familial pancreatic cancer in Germany. Int J Cancer 20:110902–110906Google Scholar
  12. 12.
    Hemminki K, Li X (2003) Familial and second primary pancreatic cancers: a nationwide epidemiologic study from Sweden. Int J Cancer 10:525–530CrossRefGoogle Scholar
  13. 13.
    Permuth-Wey J, Egan KM (2009) Family history is a significant risk factor for pancreatic cancer: results from a systematic review and metaanalysis. Fam Cancer 8:109–117PubMedCrossRefGoogle Scholar
  14. 14.
    Bartsch DK (2003) Familial pancreatic cancer. Br J Surg 90:386–387PubMedCrossRefGoogle Scholar
  15. 15.
    Jenne DE et al (1998) Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18:38–43PubMedCrossRefGoogle Scholar
  16. 16.
    Giardiello FM et al (1987) Increased risk of cancer in the Peutz-Jeghers syndrome. N Engl J Med 316:1511–1514PubMedCrossRefGoogle Scholar
  17. 17.
    Goldstein AM et al (1995) Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. N Engl J Med 12:333970–333974Google Scholar
  18. 18.
    Whelan AJ, Bartsch DK, Goodfellow PJ (1995) Brief report: a familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumor-suppressor gene. N Engl J Med 12:333975–333977Google Scholar
  19. 19.
    Lynch HT et al (2002) Phenotypic variation in eight extended CDKN2A germline mutation familial atypical multiple mole melanoma-pancreatic carcinoma-prone families: the familial atypical mole melanoma-pancreatic carcinoma syndrome. Cancer 1:9484–9496Google Scholar
  20. 20.
    Bartsch DK et al (2010) Clinical and genetic analysis of 18 pancreatic carcinoma/melanoma-prone families. Clin Genet 77:333–41PubMedCrossRefGoogle Scholar
  21. 21.
    Vasen HF, Gruis NA, Frants RR, van Der Velden PA, Hille ET, Bergman W (2000) Risk of developing pancreatic cancer in families with familial atypical multiple mole melanoma associated with a specific 19 deletion of p16 (p16-Leiden). Int J Cancer 15:87809–87811Google Scholar
  22. 22.
    The Breast Cancer Linkage Consortium (1999) Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 91:1310–1316CrossRefGoogle Scholar
  23. 23.
    van Asperen CJ et al (2005) Cancer risk in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet 42:711–719PubMedCrossRefGoogle Scholar
  24. 24.
    Thompson D, Easton DF (2002) Breast Cancer Linkage Consortium. Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst 94:1358–1365PubMedCrossRefGoogle Scholar
  25. 25.
    Moran A et al (2011) Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam Cancer 11:235–42CrossRefGoogle Scholar
  26. 26.
    Lynch HT, Voorhees GJ, Lanspa SJ, McGreevy PS, Lynch JF (1985) Pancreatic carcinoma and hereditary nonpolyposis colorectal cancer: a family study. Br J Cancer 52:271–273PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Aarnio M et al (1999) Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 81:214–218PubMedCrossRefGoogle Scholar
  28. 28.
    Kastrinos F et al (2009) Risk of pancreatic cancer in families with Lynch syndrome. JAMA 302:1790–1795PubMedCrossRefGoogle Scholar
  29. 29.
    Maire F et al (2002) Intraductal papillary and mucinous pancreatic tumour: a new extracolonic tumour in familial adenomatous polyposis. Gut 51:446–449PubMedCrossRefGoogle Scholar
  30. 30.
    Giardello FM et al (1993) Increased risk of thyroid and pancreatic carcinoma in familial adenomatous polyposis. Gut 34:1394–1396CrossRefGoogle Scholar
  31. 31.
    Whitcomb D et al (1996) Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14:141–145PubMedCrossRefGoogle Scholar
  32. 32.
    Witt H et al (2000) Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet 25:213–216PubMedCrossRefGoogle Scholar
  33. 33.
    Lowenfels AB, Maisonneuve P, Whitcomb DC (2000) Risk factors for cancer in hereditary pancreatitis. International Hereditary Pancreatitis Study Group. Med Clin North Am 84:565–573PubMedCrossRefGoogle Scholar
  34. 34.
    Lowenfels AB, Maisonneuve P, Whitcomb DC, Lerch MM, DiMagno EP (2001) Cigarette smoking as a risk factor for pancreatic cancer in patients with hereditary pancreatitis. JAMA 11:286169–286170Google Scholar
  35. 35.
    Maisonneuve P, Marshall BC, Lowenfels AB (2007) Risk of pancreatic cancer in patients with cystic fibrosis. Gut 56:1327–1328PubMedCrossRefGoogle Scholar
  36. 36.
    Brand RE et al (2007) Advances in counselling and surveillance of patients at risk for pancreatic cancer. Gut 56:1460–1469PubMedCrossRefGoogle Scholar
  37. 37.
    Lynch HT, Brand RE, Deters CA, Shaw TG, Lynch JF (2001) Hereditary pancreatic cancer. Pancreatology 1:466–471PubMedCrossRefGoogle Scholar
  38. 38.
    Hruban RH et al (1999) Familial pancreatic cancer. Ann Oncol 10:69–73PubMedCrossRefGoogle Scholar
  39. 39.
    Schneider R et al (2011) German national case collection for familial pancreatic cancer (FaPaCa): ten years experience. Fam Cancer 10:323–330PubMedCrossRefGoogle Scholar
  40. 40.
    Greenhalf W et al (2006) Anticipation in familial pancreatic cancer. Gut 55:252–258PubMedCrossRefGoogle Scholar
  41. 41.
    Rulyak SJ, Lowenfels AB, Maisonneuve P, Brentnall TA (2003) Risk factors for the development of pancreatic cancer in familial pancreatic cancer kindreds. Gastroenterology 124:1292–1299PubMedCrossRefGoogle Scholar
  42. 42.
    Wang L et al (2009) Elevated cancer mortality in the relatives of patients with pancreatic cancer. Cancer Epidemiol Biomark Prev 18:2829–2834CrossRefGoogle Scholar
  43. 43.
    Klein AP et al (2004) Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res 64:2634–2638PubMedCrossRefGoogle Scholar
  44. 44.
    Tersmette AC et al (2001) Increased risk of incident pancreatic cancer among first-degree relatives of patients with familial pancreatic cancer. Clin Cancer Res 7:738–744PubMedGoogle Scholar
  45. 45.
    Brune KA et al (2010) Importance of age of onset in pancreatic cancer kindreds. J Natl Cancer Inst 102:119–126PubMedCrossRefGoogle Scholar
  46. 46.
    Aichler M et al (2013) Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. J Pathol 226:723–34CrossRefGoogle Scholar
  47. 47.
    Brune K et al (2006) Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. Am J Surg Path 30:1067–1076PubMedPubMedCentralGoogle Scholar
  48. 48.
    Shi C et al (2009) Increased prevalence of precursor lesions in familial pancreatic cancer patients. Clin Cancer Res 15:7737–7743PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Langer P, Gress TM, Bartsch DK (2010) Pancreatic cancer screening in individuals at risk—too early for a general implementation on a health care basis. Gut 59:1006–1007CrossRefGoogle Scholar
  50. 50.
    Ingkakul T, Sadakari Y, Jenaga J, Satho N, Takahata S, Tanaka M (2010) Predictors of the presence of concomitant invasive ductal carcinoma in intraductal papillary mucinous neoplasm of the pancreas. Ann Surg 251:70–75PubMedCrossRefGoogle Scholar
  51. 51.
    Uehara H et al (2008) Development of ductal carcinoma of the pancreas during follow-up of branch duct intraductal papillary mucinous neoplasm of the pancreas. Gut 57:1561–1565PubMedCrossRefGoogle Scholar
  52. 52.
    Klein AP, Beaty TH, Bailey-Wilson JE, Brune KA, Hruban RH, Petersen GM (2002) Evidence for a major gene influencing risk of pancreatic cancer. Genet Epidemiol 23:133–137PubMedCrossRefGoogle Scholar
  53. 53.
    Eberle MA et al (2002) A new susceptibility locus for autosomal dominant pancreatic cancer maps to chromosome 4q32-34. Am J Hum Genet 70:1044–1048PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Pogue-Geile KL et al (2006) Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS Med 3:e516PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Slater E et al (2007) Palladin mutation causes familial pancreatic cancer: absence in European families. PLoS Med 4:e164PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Klein AP et al (2009) Absence of deleterious palladin mutations in patients with familial pancreatic cancer. Cancer Epidemiol Biomark Prev 18:1328–1330CrossRefGoogle Scholar
  57. 57.
    Bartsch DK et al (2002) CDKN2A germline mutations in familial pancreatic cancer. Ann Surg 236:730–737PubMedCrossRefGoogle Scholar
  58. 58.
    Slater E et al (2010) Prevalence of BRCA2 and CDKN2a mutations in German Familial pancreatic cancer families. Fam Cancer 9:335–343PubMedCrossRefGoogle Scholar
  59. 59.
    Hahn SA et al (2003) BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst 95:214–221PubMedCrossRefGoogle Scholar
  60. 60.
    Murphy KM et al (2002) Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17%. Cancer Res 62:3789–3793PubMedGoogle Scholar
  61. 61.
    Couch FJ et al (2007) The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiol Biomark Prev 16:342–346CrossRefGoogle Scholar
  62. 62.
    Skoulidis F et al (2010) Germline Brca2 heterozygosity promotes Kras(G12D)-driven carcinogenesis in a murine model of familial pancreatic cancer. Cancer Cell 18:499–509PubMedCrossRefGoogle Scholar
  63. 63.
    Rowley M et al (2011) Inactivation of BRCA2 promotes TP53-asociated but inhibits KrasG12D-dependent pancreatic cancer development in mice. Gastroenterology 140:1303–1313PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Feldmann G et al (2011) Inactivation of Brca2 cooperates with Trp53(R172H) to induce invasive pancreatic ductal adenocarcinomas in mice: a mouse model of familial pancreatic cancer. Cancer Biol Ther 11:959–968PubMedCrossRefGoogle Scholar
  65. 65.
    Bryant HE et al (2005) Specific killing of BRCA2-deficient tumors with inhibitors of poly (ADP-ribose) polymerase. Nature 434:913–917PubMedCrossRefGoogle Scholar
  66. 66.
    James E, Waldron-Lynch MG, Saif MW (2009) Prolonged survival in a patient with BRCA2 associated metastatic pancreatic cancer after exposure to camptothecin: a case report and review of literature. Anticancer Drugs 20:634–638PubMedCrossRefGoogle Scholar
  67. 67.
    Jones S et al (2009) Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 324:217–220PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Slater EP et al (2010) PALB2 mutations in European familial pancreatic cancer families. Clin Genet 78:490–494PubMedCrossRefGoogle Scholar
  69. 69.
    Harinck F et al (2012) Routine testing for PALB2 mutations in familial pancreatic cancer families and breast cancer families with pancreatic cancer is not indicated. Eur J Hum Genet 20:577–9PubMedCrossRefGoogle Scholar
  70. 70.
    van der Heijden MS, Yeo CJ, Hruban RH, Kern SE (2003) Fanconi anemia gene mutations in young onset pancreatic cancer. Cancer Res 63:2585–2588PubMedGoogle Scholar
  71. 71.
    Couch FJ et al (2005) Germ line Fanconi anemia complementation group C mutations and pancreatic cancer. Cancer Res 65:383–386PubMedGoogle Scholar
  72. 72.
    Roberts NJ et al (2011) ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov 2:41–46PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Axilbund JE, Brune KA, Canto MI, Brehon BC, Wroblewski LD, Griffin CA (2005) Patient perspective on the value of genetic counselling for familial pancreas cancer. Hered Cancer Clin Pract 3:115–122PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Wang W, Chen S, Brune KA et al (2007) PancPRO: risk assessment in individuals with a family history of pancreatic cancer. J Clin Oncol 25:1417–1422PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Leonardi M et al (2012) “PancPro” as a tool for selecting families eligible for pancreatic cancer screening: an Italian study of incident cases. Dig Liver Dis 44:585–8PubMedCrossRefGoogle Scholar
  76. 76.
    American Society of Clinical Oncology (2003) American Society of Clinical Oncology policy statement update: genetic testing for cancer susceptibility. J Clin Oncol 21:2397–2406CrossRefGoogle Scholar
  77. 77.
    Canto MI et al (2012) On behalf of the International CAPS Consortium International Consensus Recommendations on the management of patients with increased risk for familial pancreatic cancer (Cancer of the Pancreas Screening Consortium (CAPS) 2011 Summit). To be presented at the Digestive Disease Week (DDW), San Diego, California, USA, May 19–22Google Scholar
  78. 78.
    Bussom S, Saif MW (2010) Methods and rationale for the early detection of pancreatic cancer. Highlights from the “2010 ASCO Gastrointestinal Cancers Symposium”. JOP 11:128–130PubMedGoogle Scholar
  79. 79.
    Brentnall TA et al (1999) Early diagnosis and treatment of pancreatic dysplasia in patients with a family history of pancreatic cancer. Ann Intern Med 131:247–255PubMedCrossRefGoogle Scholar
  80. 80.
    Kimmey MB et al (2002) Screening and surveillance for hereditary pancreatic cancer. Gastrointest Endosc 56:S82–S86PubMedCrossRefGoogle Scholar
  81. 81.
    Canto MI et al (2004) Screening for pancreatic neoplasia in high-risk individuals: an EUS-based approach. Clin Gastroenterol Hepatol 2:606–621PubMedCrossRefGoogle Scholar
  82. 82.
    Canto MI et al (2006) Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol 4:766–781PubMedCrossRefGoogle Scholar
  83. 83.
    Poley JW et al (2009) The yield of first-time endoscopic ultrasonography in screening individuals at a high risk of developing pancreatic cancer. Am J Gastroenterol 104:2175–2181PubMedCrossRefGoogle Scholar
  84. 84.
    Langer P et al (2009) Five years of prospective screening of high-risk individuals from families with familial pancreatic cancer. Gut 58:1410–1418PubMedCrossRefGoogle Scholar
  85. 85.
    Verna EC et al (2010) Pancreatic cancer screening in a prospective cohort of high-risk patients: a comprehensive strategy of imaging and genetics. Clin Cancer Res 16:5028–5037PubMedCrossRefGoogle Scholar
  86. 86.
    Canto MI et al (2012) Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology 142:796–804PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Rulyak SJ et al (2001) Inherited pancreatic cancer: surveillance and treatment strategies for affected families. Pancreatology 1:477–485PubMedCrossRefGoogle Scholar
  88. 88.
    Raut CP et al (2003) Diagnostic accuracy of endoscopic ultrasound-guided fine-needle aspiration in patients with presumed pancreatic cancer. J GastrointestSurg 7:118–126CrossRefGoogle Scholar
  89. 89.
    Ludwig E et al (2011) Feasibility and yield of screening in relatives from familial pancreatic cancer families. Am J Gastroenterol 106:946–954PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Al-Sukhni W et al (2012) Screening for pancreatic cancer in a high-risk cohort: an eight-year experience. J Gastrointest Surg 16:771–783PubMedCrossRefGoogle Scholar
  91. 91.
    Vasen HF et al (2011) Magnetic resonance imaging surveillance detects early-stage pancreatic cancer in carriers of a p16-Leiden mutation. Gastroenterology 140:850–856PubMedCrossRefGoogle Scholar
  92. 92.
    Sutherland DE, Matas AJ, Najarian JS (1977) Pancreas and islet transplantation. World J Surg 2:185PubMedCrossRefGoogle Scholar
  93. 93.
    Harinck F et al (2011) Feasibility of a pancreatic cancer surveillance program from a psychological point of view. Genet Med 13:1015–1024PubMedCrossRefGoogle Scholar
  94. 94.
    Hart SL et al (2012) Moderators of cancer related distress and worry after a pancreatic cancer genetic counselling and screening intervention. Psychooncology 21:1324–30. doi: 10.1002/pon.2026 PubMedCrossRefGoogle Scholar
  95. 95.
    Maheu C et al (2010) Pancreatic cancer risk counselling and screening: impact on perceived risk and psychological functioning. Fam Cancer 9:617–624PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Volker Fendrich
    • 1
  • Peter Langer
    • 1
  • Detlef K. Bartsch
    • 1
  1. 1.National Case Collection of Familial Pancreatic Cancer of the Deutsche Krebshilfe (FaPaCa), Department of SurgeryPhilipps-University MarburgMarburgGermany

Personalised recommendations