International Journal of Colorectal Disease

, Volume 28, Issue 1, pp 35–42 | Cite as

Quantitative profiling of CpG island methylation in human stool for colorectal cancer detection

  • Giles O. Elliott
  • Ian T. Johnson
  • Jane Scarll
  • Jack Dainty
  • Elizabeth A. Williams
  • D. Garg
  • Amanda Coupe
  • David M. Bradburn
  • John C. Mathers
  • Nigel J. Belshaw
Original Article



The aims of this study were to investigate the use of quantitative CGI methylation data from stool DNA to classify colon cancer patients and to relate stool CGI methylation levels to those found in corresponding tissue samples.


We applied a quantitative methylation-specific PCR assay to determine CGI methylation levels of six genes, previously shown to be aberrantly methylated during colorectal carcinogenesis. Assays were performed on DNA from biopsies of “normal” mucosa and stool samples from 57 patients classified as disease-free, adenoma, or cancer by endoscopy, and in tumour tissue from cancer patients. Additionally, CGI methylation was analysed in stool DNA from an asymptomatic population of individuals covering a broad age range (mean = 47 ± 24 years)


CGI methylation levels in stool DNA were significantly higher than in DNA from macroscopically normal mucosa, and a significant correlation between stool and mucosa was observed for ESR1 only. Multivariate statistical analyses using the methylation levels of each CGI in stool DNA as a continuous variable revealed a highly significant (p = 0.003) classification of cancer vs. non-cancer (adenoma + disease-free) patients (sensitivity = 65 %, specificity = 81 %).


CGI methylation profiling of stool DNA successfully identified patients with cancer despite the methylation status of CGIs in stool DNA not generally reflecting those in DNA from the colonic mucosa.


DNA methylation Colorectal cancer Stool Biomarkers Epigenetics 



We thank the UK Food Standards Agency (project no. N12009) and the Biotechnology and Biological Sciences Research Council (42212A) for financial support.


  1. 1.
    Winawer SJ, Fletcher RH, Miller L, Godlee F, Stolar MH, Mulrow CD, Woolf SH, Glick SN, Ganiats TG, Bond JH, Rosen L, Zapka JG, Olsen SJ, Giardiello FM, Sisk JE, Van Antwerp R, Brown-Davis C, Marciniak DA, Mayer RJ (1997) Colorectal cancer screening: clinical guidelines and rationale. Gastroenterology 112(2):594–642. doi: 10.1053/gast.1997.v112.agast970594 PubMedCrossRefGoogle Scholar
  2. 2.
    Ahlquist DA, Wieand HS, Moertel CG, McGill DB, Loprinzi CL, O'Connell MJ, Mailliard JA, Gerstner JB, Pandya K, Ellefson RD (1993) Accuracy of fecal occult blood screening for colorectal neoplasia. A prospective study using Hemoccult and HemoQuant tests. JAMA 269(10):1262–1267. doi: 10.1001/jama.269.10.1262 PubMedCrossRefGoogle Scholar
  3. 3.
    Allison JE, Feldman R, Tekawa IS (1990) Hemoccult screening in detecting colorectal neoplasm: sensitivity, specificity, and predictive value. Long-term follow-up in a large group practice setting. Ann Intern Med 112(5):328–333PubMedGoogle Scholar
  4. 4.
    Allison JE, Tekawa IS, Ransom LJ, Adrain AL (1996) A comparison of fecal occult-blood tests for colorectal-cancer screening. N Engl J Med 334(3):155–159. doi: 10.1056/NEJM199601183340304 PubMedCrossRefGoogle Scholar
  5. 5.
    Lieberman DA, Weiss DG (2001) One-time screening for colorectal cancer with combined fecal occult-blood testing and examination of the distal colon. N Engl J Med 345(8):555–560. doi: 10.1056/NEJMoa010328 PubMedCrossRefGoogle Scholar
  6. 6.
    Young GP, John DJBS, Winawer SJ, Rozen P (2002) Choice of fecal occult blood tests for colorectal cancer screening: recommendations based on performance characteristics in population studies. a WHO (World Health Organization) and OMED (World Organization for Digestive Endoscopy) report. Am J Gastroenterol 97(10):2499–2507. doi: 10.1111/j.1572-0241.2002.06046.x PubMedGoogle Scholar
  7. 7.
    Sidransky D, Tokino T, Hamilton SR, Kinzler KW, Levin B, Frost P, Vogelstein B (1992) Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors. Science 256(5053):102–105. doi: 10.1126/science.1566048 PubMedCrossRefGoogle Scholar
  8. 8.
    Villa E, Dugani A, Rebecchi A, Vignoli A, Grottola A, Buttafoco P, Losi L, Perini M, Trande P, Merighi A, Lerose R, Manenti F (1996) Identification of subjects at risk for colorectal carcinoma through a test based on K-ras determination in the stool. Gastroenterology 110(5):1346–1353. doi: 10.1053/gast.1996.v110.pm8613038 PubMedCrossRefGoogle Scholar
  9. 9.
    Traverso G, Shuber A, Levin B, Johnson C, Olsson L, Schoetz DJ Jr, Hamilton SR, Boynton K, Kinzler KW, Vogelstein B (2002) Detection of APC mutations in fecal DNA from patients with colorectal tumors. N Engl J Med 346(5):311–320. doi: 10.1056/NEJMoa012294 PubMedCrossRefGoogle Scholar
  10. 10.
    Imperiale TF, Ransohoff DF, Itzkowitz SH, Turnbull BA, Ross ME, the Colorectal Cancer Study G (2004) Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N Engl J Med 351(26):2704–2714. doi: 10.1056/NEJMoa033403 PubMedCrossRefGoogle Scholar
  11. 11.
    Ahlquist DA, Sargent DJ, Loprinzi CL, Levin TR, Rex DK, Ahnen DJ, Knigge K, Lance MP, Burgart LJ, Hamilton SR, Allison JE, Lawson MJ, Devens ME, Harrington JJ, Hillman SL (2008) Stool DNA and occult blood testing for screen detection of colorectal neoplasia. Ann Intern Med 149(7):441–450, W481PubMedGoogle Scholar
  12. 12.
    Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E, Baylin SB, Herman JG (1998) Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A 95(20):11891–11896. doi: 10.1073/pnas.95.20.11891 PubMedCrossRefGoogle Scholar
  13. 13.
    Enokida H, Shiina H, Urakami S, Igawa M, Ogishima T, Li L-C, Kawahara M, Nakagawa M, Kane CJ, Carroll PR, Dahiya R (2005) Multigene methylation analysis for detection and staging of prostate cancer. Clin Cancer Res 11(18):6582–6588. doi: 10.1158/1078-0432.ccr-05-0658 PubMedCrossRefGoogle Scholar
  14. 14.
    Fackler MJ, McVeigh M, Mehrotra J, Blum MA, Lange J, Lapides A, Garrett E, Argani P, Sukumar S (2004) Quantitative multiplex methylation-specific PCR assay for the detection of promoter hypermethylation in multiple genes in breast cancer. Cancer Res 64(13):4442–4452. doi: 10.1158/0008-5472.can-03-3341 PubMedCrossRefGoogle Scholar
  15. 15.
    Grote HJ, Schmiemann V, Geddert H, Bocking R, Kappes R, Gabbert HE, Sarbia M (2006) Methylation of RAS association domain family protein 1A as a biomarker of lung cancer. Canc Cytopathol 108(2):129–134. doi: 10.1002/cncr.21717 Google Scholar
  16. 16.
    Jubb AM, Quirke P, Oates AJ (2003) DNA methylation, a biomarker for colorectal cancer: implications for screening and pathological utility. Ann NY Acad Sci 983(1):251–267PubMedCrossRefGoogle Scholar
  17. 17.
    Kawamoto K, Enokida H, Gotanda T, Kubo H, Nishiyama K, Kawahara M, Nakagawa M (2006) p16INK4a and p14ARF methylation as a potential biomarker for human bladder cancer. Biochem Biophys Res Commun 339(3):790–796. doi: 10.1016/j.bbrc.2005.11.072 PubMedCrossRefGoogle Scholar
  18. 18.
    Belshaw NJ, Elliott GO, Williams EA, Bradburn DM, Mills SJ, Mathers JC, Johnson IT (2004) Use of DNA from human stools to detect aberrant CpG island methylation of genes implicated in colorectal cancer. Canc Epidemiol Biomarkers Prev 13(9):1495–1501Google Scholar
  19. 19.
    Chang E, Il Park D, Kim YJ, Kim BK, Park JH, Kim HJ, Cho YK, Il Sohn C, Jeon WK, Kim BI, Kim HD, Kim DH, Kim YH (2010) Detection of colorectal neoplasm using promoter methylation of ITGA4, SFRP2, and p16 in stool samples: a preliminary report in Korean patients. Hepato-Gastroenterol 57(101):720–727Google Scholar
  20. 20.
    Chen WD, Han ZJ, Skoletsky J, Olson J, Sah J, Myeroff L, Platzer P, Lu S, Dawson D, Willis J, Pretlow TP, Lutterbaugh J, Kasturi L, Willson JK, Rao JS, Shuber A, Markowitz SD (2005) Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J Natl Canc Inst 97(15):1124–1132. doi: 10.1093/jnci%2Fdji204 CrossRefGoogle Scholar
  21. 21.
    Glockner SC, Dhir M, Yi JM, McGarvey KE, Van Neste L, Louwagie J, Chan TA, Kleeberger W, de Bruine AP, Smits KM, Khalid-de Bakker CAJ, Jonkers DMAE, Stockbrugger RW, Meijer GA, Oort FA, Iacobuzio-Donahue C, Bierau K, Herman JG, Baylin SB, Van Engeland M, Schuebel KE, Ahuja N (2009) Methylation of TFPI2 in stool DNA: a potential novel biomarker for the detection of colorectal cancer. Cancer Res 69(11):4691–4699. doi: 10.1158/0008-5472.can-08-0142 PubMedCrossRefGoogle Scholar
  22. 22.
    Huang ZH, Li LH, Wang JF (2007) Hypermethylation of SFRP2 as a potential marker for stool-based detection of colorectal cancer and precancerous lesions. Dig Dis Sci 52(9):2287–2291. doi: 10.1007/s10620-007-9755-y PubMedCrossRefGoogle Scholar
  23. 23.
    Huang ZH, Li LH, Yang F, Wang JF (2007) Detection of aberrant methylation in fecal DNA as a molecular screening tool for colorectal cancer and precancerous lesions. World J Gastroenterol 13(6):950–954PubMedGoogle Scholar
  24. 24.
    Lenhard K, Bommer GT, Asutay S, Schauer R, Brabletz T, Goke B, Lamerz R, Kolligs FT (2005) Analysis of promoter methylation in stool: a novel method for the detection of colorectal cancer. Clin Gastroenterol Hepatol 3(2):142–149. doi: 10.1016/S1542-3565(04)00624-X PubMedCrossRefGoogle Scholar
  25. 25.
    Leung WK, To KF, Man EP, Chan MW, Bai AH, Hui AJ, Chan FK, Lee JF, Sung JJ (2004) Detection of epigenetic changes in fecal DNA as a molecular screening test for colorectal cancer: a feasibility study. Clin Chem 50(11):2179–2182. doi: 10.1373/clinchem.2004.039305 PubMedCrossRefGoogle Scholar
  26. 26.
    Leung WK, To K-F, Man EPS, Chan MWY, Hui AJ, Ng SSM, Lau JYW, Sung JJY (2007) Detection of hypermethylated DNA or cyclooxygenase-2 messenger RNA in fecal samples of patients with colorectal cancer or polyps. Am J Gastroenterol 102(5):1070–1076. doi: 10.1111/j.1572-0241.2007.01108.x PubMedCrossRefGoogle Scholar
  27. 27.
    Muller HM, Oberwalder M, Fiegl H, Morandell M, Goebel G, Zitt M, Muhlthaler M, Ofner D, Margreiter R, Widschwendter M (2004) Methylation changes in faecal DNA: a marker for colorectal cancer screening? Lancet 363(9417):1283–1285PubMedCrossRefGoogle Scholar
  28. 28.
    Oberwalder M, Zitt M, Wontner C, Fiegl H, Goebel G, Kohle O, Muhlmann G, Ofner D, Margreiter R, Muller HM (2008) SFRP2 methylation in fecal DNA: a marker for colorectal polyps. Int J Color Dis 23:15–19. doi: 10.1007/s00384-007-0355-2 CrossRefGoogle Scholar
  29. 29.
    Petko Z, Ghiassi M, Shuber A, Gorham J, Smalley W, Washington MK, Schultenover S, Gautam S, Markowitz SD, Grady WM (2005) Aberrantly methylated CDKN2A, MGMT, and MLH1 in colon polyps and in fecal DNA from Patients with colorectal polyps. Clin Cancer Res 11(3):1203–1209PubMedGoogle Scholar
  30. 30.
    Wang DR, Tang D (2008) Hypermethylated SFRP2 gene in fecal DNA is a high potential biomarker for colorectal cancer noninvasive screening. World J Gastroenterol 14(4):524–531. doi: 10.3748/wjg.14.524 PubMedCrossRefGoogle Scholar
  31. 31.
    Ahlquist D, Skoletsky J, Boynton K, Harrington J, Mahoney D, Pierceall W, Thibodeau S, Shuber A (2000) Colorectal cancer screening by detection of altered human DNA in stool: feasibility of a multitarget assay panel. Gastroenterology 119(5):1219–1227. doi: 10.1053/gast.2000.19580 PubMedCrossRefGoogle Scholar
  32. 32.
    Klaassen CHW, Jeunink MAF, Prinsen CFM, Ruers TJM, Tan ACITL, Strobbe LJA, Thunnissen FBJM (2003) Quantification of human DNA in feces as a diagnostic test for the presence of colorectal cancer. Clin Chem 49(7):1185–1187. doi: 10.1373/49.7.1185 PubMedCrossRefGoogle Scholar
  33. 33.
    Belshaw NJ, Elliott GO, Foxall RJ, Dainty JR, Pal N, Coupe A, Garg D, Bradburn DM, Mathers JC, Johnson IT (2008) Profiling CpG island field methylation in both morphologically normal and neoplastic human colonic mucosa. Br J Cancer 99(1):136–142. doi: 10.1038/sj.bjc.6604432 PubMedCrossRefGoogle Scholar
  34. 34.
    Ahuja N, Issa JP (2000) Aging, methylation and cancer. Histol Histopathol 15(3):835–842PubMedGoogle Scholar
  35. 35.
    Ahuja N, Li Q, Mohan AL, Baylin SB, Issa J-PJ (1998) Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res 58(23):5489–5494PubMedGoogle Scholar
  36. 36.
    Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA (2001) Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61(9):3573–3577PubMedGoogle Scholar
  37. 37.
    Worthley DL, Whitehall VLJ, Buttenshaw RL, Irahara N, Greco SA, Ramsnes I, Mallitt KA, Le Leu RK, Winter J, Hu Y, Ogino S, Young GP, Leggett BA (2010) DNA methylation within the normal colorectal mucosa is associated with pathway-specific predisposition to cancer. Oncogene 29(11):1653–1662. doi: 10.1038/onc.2009.449 PubMedCrossRefGoogle Scholar
  38. 38.
    Nakagawa H, Nuovo GJ, Zervos EE, Martin EW, Salovaara R, Aaltonen LA, de la Chapelle A (2001) Age-related hypermethylation of the 5′ region of MLH1 in normal colonic mucosa is associated with microsatellite-unstable colorectal cancer development. Cancer Res 61(19):6991–6995PubMedGoogle Scholar
  39. 39.
    Kang MY, Lee BB, Ji YI, Jung EH, Chun H-K, Song SY, Park S-E, Park J, Kim D-H (2008) Association of interindividual differences in p14ARF promoter methylation with single nucleotide polymorphism in primary colorectal cancer. Cancer 112(8):1699–1707. doi: 10.1002/cncr.23335 PubMedCrossRefGoogle Scholar
  40. 40.
    Lind GE, Thorstensen L, Lovig T, Meling GI, Hamelin R, Rognum TO, Esteller M, Lothe RA (2004) A CpG island hypermethylation profile of primary colorectal carcinomas and colon cancer cell lines. Mol Canc 3:28CrossRefGoogle Scholar
  41. 41.
    Konishi K, Shen L, Jelinek J, Watanabe Y, Ahmed S, Kaneko K, Kogo M, Takano T, Imawari M, Hamilton SR, Issa J-PJ (2009) Concordant DNA methylation in synchronous colorectal carcinomas. Canc Prev Res 2(9):814–822. doi: 10.1158/1940-6207.capr-09-0054 CrossRefGoogle Scholar
  42. 42.
    Moriyama T, Matsumoto T, Nakamura S, Jo Y, Mibu R, Yao T, Iida M (2007) Hypermethylation of p14(ARF) may be predictive of colitic cancer in patients with ulcerative colitis. Dis Colon Rectum 50(9):1384–1392PubMedCrossRefGoogle Scholar
  43. 43.
    Saito S, Kato J, Hiraoka S, Horii J, Suzuki H, Higashi R, Kaji E, Kondo Y, Yamamoto K (2011) DNA methylation of colon mucosa in ulcerative colitis patients: correlation with inflammatory status. Inflamm Bowel Dis:n/a-n/a. doi: 10.1002/ibd.21573
  44. 44.
    Team RDC (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  45. 45.
    Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7(1):21–33. doi: 10.1038/nrg1748 PubMedCrossRefGoogle Scholar
  46. 46.
    Ahlquist DA, Klatt KK, Harrington JJ, Cunningham JM (2002) Novel use of hypermethylated DNA markers in stool for detection of colorectal cancer: a feasibility study. Gastroenterology 122(suppl 1):A40Google Scholar
  47. 47.
    Boynton KA, Summerhayes IC, Ahlquist DA, Shuber AP (2003) DNA Integrity as a potential marker for stool-based detection of colorectal cancer. Clin Chem 49(7):1058–1065. doi: 10.1373/49.7.1058 PubMedCrossRefGoogle Scholar
  48. 48.
    Zou H, Harrington JJ, Klatt KK, Ahlquist DA (2006) A sensitive method to quantify human long DNA in stool: relevance to colorectal cancer screening. Canc Epidemiol Biomarkers Prev 15(6):1115–1119. doi: 10.1158/1055-9965.epi-05-0992 CrossRefGoogle Scholar
  49. 49.
    Hellebrekers DMEI, Lentjes MHFM, van den Bosch SM, Melotte V, Wouters KAD, Daenen KLJ, Smits KM, Akiyama Y, Yuasa Y, Sanduleanu S, Khalid-de Bakker CAJ, Jonkers D, Weijenberg MP, Louwagie J, van Criekinge W, Carvalho B, Meijer GA, Baylin SB, Herman JG, de Bruïne AP, van Engeland M (2009) GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin Cancer Res 15(12):3990–3997. doi: 10.1158/1078-0432.ccr-09-0055 PubMedCrossRefGoogle Scholar
  50. 50.
    Azuara D, Rodriguez-Moranta F, de Oca J, Soriano-Izquierdo A, Mora J, Guardiola J, Biondo S, Blanco I, Peinado MA, Moreno V, Esteller M, Capella G (2010) Novel methylation panel for the early detection of colorectal tumors in stool DNA. Clin Colorectal Canc 9(3):168–176. doi: 10.3816/CCC.2010.n.023 CrossRefGoogle Scholar
  51. 51.
    Loktionov A (2007) Cell exfoliation in the human colon: myth, reality and implications for colorectal cancer screening. Int J Cancer 120(11):2281–2289. doi: 10.1002/ijc.22647 PubMedCrossRefGoogle Scholar
  52. 52.
    Rosen K, Shi W, Calabretta B, Filmus J (2002) Cell detachment triggers p38 mitogen-activated protein kinase-dependent overexpression of Fas ligand. A novel mechanism of Anoikis of intestinal epithelial cells. J Biol Chem 277(48):46123–46130. doi: 10.1074/jbc.M207883200 PubMedCrossRefGoogle Scholar
  53. 53.
    Fenton RG, Hixon JA, Wright PW, Brooks AD, Sayers TJ (1998) Inhibition of Fas (CD95) expression and Fas-mediated apoptosis by oncogenic Ras. Cancer Res 58(15):3391–3400PubMedGoogle Scholar
  54. 54.
    Peli J, Schroter M, Rudaz C, Hahne M, Meyer C, Reichmann E, Tschopp J (1999) Oncogenic Ras inhibits Fas ligand-mediated apoptosis by downregulating the expression of Fas. EMBO J 18(7):1824–1831. doi: 10.1093/emboj/18.7.1824 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Giles O. Elliott
    • 1
  • Ian T. Johnson
    • 1
  • Jane Scarll
    • 1
  • Jack Dainty
    • 1
  • Elizabeth A. Williams
    • 3
  • D. Garg
    • 2
  • Amanda Coupe
    • 2
  • David M. Bradburn
    • 4
  • John C. Mathers
    • 2
  • Nigel J. Belshaw
    • 1
  1. 1.Institute of Food ResearchNorwichUK
  2. 2.Human Nutrition Research Centre, Institute for Ageing and HealthNewcastle UniversityNewcastle-On-TyneUK
  3. 3.Department of Oncology, Faculty of Medicine, Dentistry & Health, Royal Hallamshire HospitalUniversity of SheffieldSheffieldUK
  4. 4.Wansbeck HospitalAshingtonUK

Personalised recommendations