International Journal of Colorectal Disease

, Volume 27, Issue 7, pp 885–892

Association of NQO1 rs1800566 polymorphism and the risk of colorectal cancer: a meta-analysis

Original Article



NAD(P)H:quinone oxidoreductase 1 (NQO1) rs1800566 polymorphism is found to have a lower enzymatic activity, which may result in increased incidence of several kinds of carcinomas including colorectal cancer. Results from published studies on the association of NQO1 rs1800566 genetic polymorphism with the risk of colorectal cancer are inconsistent. We performed a meta-analysis to summarize the possible association.

Materials and methods

All eligible published studies were searched from PubMed and Elsevier ScienceDirect. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were analyzed for additive, dominant, and recessive models to assess the association using fixed- or random-effect model.


We identified 12 case-control studies that include 5,525 cases and 6,272 controls for the present meta-analysis. Significant associations between NQO1 rs1800566 genetic polymorphism and risk of colorectal cancer were observed in additive (OR = 1.09, 95% CI = 1.02–1.16, p = 0.009) and dominant models (OR = 1.12, 95% CI = 1.04–1.21, p = 0.004 for TT + CT vs. CC). Moreover, in the subgroup analysis based on ethnicity, significant associations were observed in Caucasians but not in Asians.


This meta-analysis provided evidence that NQO1 rs1800566 genetic polymorphism was associated with increased risk of colorectal cancer and that the T allele probably acts as an important risk factor.


NQO1 Polymorphism Colorectal cancer Meta-analysis 


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.3322/caac.20107 PubMedCrossRefGoogle Scholar
  2. 2.
    Center MM, Jemal A, Ward E (2009) International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomarkers Prev 18(6):1688–1694. doi:10.1158/1055-9965.EPI-09-0090 PubMedCrossRefGoogle Scholar
  3. 3.
    Center MM, Jemal A, Smith RA, Ward E (2009) Worldwide variations in colorectal cancer. CA Cancer J Clin 59(6):366–378. doi:10.3322/caac.20038 PubMedCrossRefGoogle Scholar
  4. 4.
    de la Chapelle A (2004) Genetic predisposition to colorectal cancer. Nat Rev Cancer 4(10):769–780. doi:10.1038/nrc1453 PubMedCrossRefGoogle Scholar
  5. 5.
    Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343(2):78–85. doi:10.1056/NEJM200007133430201 PubMedCrossRefGoogle Scholar
  6. 6.
    Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG (1992) Quinone chemistry and toxicity. Toxicol Appl Pharmacol 112(1):2–16PubMedCrossRefGoogle Scholar
  7. 7.
    O’Brien PJ (1991) Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact 80(1):1–41. doi:10.1016/0009-2797(91)90029-7 PubMedCrossRefGoogle Scholar
  8. 8.
    Workman P (1994) Enzyme-directed bioreductive drug development revisited: a commentary on recent progress and future prospects with emphasis on quinone anticancer agents and quinone metabolizing enzymes, particularly DT-diaphorase. Oncol Res 6(10–11):461–475PubMedGoogle Scholar
  9. 9.
    Schlager JJ, Powis G (1990) Cytosolic NAD(P)H:(quinone-acceptor) oxidoreductase in human normal and tumor tissue: effects of cigarette smoking and alcohol. Int J Cancer 45(3):403–409. doi:10.1002/ijc.2910450304 PubMedCrossRefGoogle Scholar
  10. 10.
    Siegel D, Gustafson DL, Dehn DL et al (2004) NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol Pharmacol 65(5):1238–1247. doi:10.1124/mol.65.5.1238 PubMedCrossRefGoogle Scholar
  11. 11.
    Winski SL, Koutalos Y, Bentley DL, Ross D (2002) Subcellular localization of NAD(P)H: quinone oxidoreductase 1 inhuman cancer cells. Cancer Res 62(5):1420–1424PubMedGoogle Scholar
  12. 12.
    Chen S, Wu K, Knox R (2000) Structure-function studies of DT-diaphorase (NQO1) and NRH:quinone oxidoreductase (NQO2). Free Rad Biol Med 29(3–4):276–284. doi:10.1016/S0891-5849(00)00308-7 PubMedCrossRefGoogle Scholar
  13. 13.
    Ross D, Siegel D (2004) NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol 382:115–144. doi:10.1016/S0076-6879(04)82008-1 PubMedCrossRefGoogle Scholar
  14. 14.
    Siegel D, McGuinness SM, Winski S, Ross D (1999) Genotype–phenotype relationships in studies of a polymorphism in NAD(P)H:quinone oxidoreductase 1. Pharmacogenetic 9(1):113–121. doi:10.1097/00008571-199902000-00015 CrossRefGoogle Scholar
  15. 15.
    Chao C, Zhang ZF, Berthiller J, Boffetta P, Hashibe M (2006) NAD(P)H:Quinone oxidoreductase 1 (NQO1) Pro187Ser polymorphism and the risk of lung, bladder, and colorectal cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15(5):979–987. doi:10.1158/1055-9965.EPI-05-0899 PubMedCrossRefGoogle Scholar
  16. 16.
    Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10:101–129. doi:10.2307/3001666 CrossRefGoogle Scholar
  17. 17.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. doi:10.1002/sim.1186 PubMedCrossRefGoogle Scholar
  18. 18.
    Ioannidis JP, Patsopoulos NA, Evangelou E (2007) Uncertainty in heterogeneity estimates in meta-analysis. Br Med J 335:914–916. doi:10.1136/bmj.39343.408449.80 CrossRefGoogle Scholar
  19. 19.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188. doi:10.1016/0197-2456(86)90046-2 PubMedCrossRefGoogle Scholar
  20. 20.
    Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748PubMedGoogle Scholar
  21. 21.
    Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. Br Med J 315(7109):629–634CrossRefGoogle Scholar
  22. 22.
    Begg CB, Berlin JA (1988) Publication bias: a problem in interpreting medical data. J R Statist Soc A 151(3):419–463CrossRefGoogle Scholar
  23. 23.
    Turner F, Smith G, Sachse C, Lightfoot T, Garner RC, Wolf CR, Forman D, Bishop DT, Barrett JH (2004) Vegetable, fruit and meat consumption and potential risk modifying genes in relation to colorectal cancer. Int J Cancer 112(2):259–564. doi:10.1002/ijc.20404 PubMedCrossRefGoogle Scholar
  24. 24.
    Lafuente MJ, Casterad X, Trias M, Ascaso C, Molina R, Ballesta A, Zheng S, Wiencke JK, Lafuente A (2000) NAD(P)H:quinone oxidoreductase-dependent risk for colorectal cancer and its association with the presence of K-ras mutations in tumors. Carcinogenesis 21(10):1813–1819. doi:10.1093/carcin/21.10.1813 PubMedCrossRefGoogle Scholar
  25. 25.
    Tijhuis MJ, Boerboom AM, Visker MH, Op den Camp L, Nagengast FM, Tan AC, Rietjens IM, Kok FJ, Aarts JM, Kampman E (2008) The influence of fruit and vegetable consumption and genetic variation on NAD(P)H:quinone oxidoreductase (NQO1) phenotype in an endoscopy-based population. Nutr Cancer 60(2):204–215. doi:10.1080/01635580701684849 PubMedCrossRefGoogle Scholar
  26. 26.
    Mitrou P, Watson M, Bingham S, Stebbings WS, Speakman CT, Loktionov A (2002) NQO1 and mEH exon 4 (mEH4) gene polymorphisms, smoking and colorectal cancer risk. IARC Sci Publ 156:495–497PubMedGoogle Scholar
  27. 27.
    Mitrou PN, Watson MA, Loktionov AS, Cardwell C, Gunter MJ, Atkin WS, Macklin CP, Cecil T, Bishop DT, Primrose J, Bingham SA (2007) Role of NQO1C609T and EPHX1 gene polymorphisms in the association of smoking and alcohol with sporadic distal colorectal adenomas: results from the UKFSS Study. Carcinogenesis 28(4):875–882. doi:10.1093/carcin/bgl194 PubMedCrossRefGoogle Scholar
  28. 28.
    van der Logt EM, Bergevoet SM, Roelofs HM, Te Morsche RH, Dijk Y, Wobbes T, Nagengast FM, Peters WH (2006) Role of epoxide hydrolase, NAD(P)H:quinone oxidoreductase, cytochrome P450 2E1 or alcohol dehydrogenase genotypes in susceptibility to colorectal cancer. Mutat Res 593(1–2):39–49. doi:10.1016/j.mrfmmm.2005.06.018 PubMedGoogle Scholar
  29. 29.
    Tijhuis MJ, Visker MH, Aarts JM, Laan W, de Boer SY, Kok FJ, Kampman E (2008) NQO1 and NFE2L2 polymorphisms, fruit and vegetable intake and smoking and the risk of colorectal adenomas in an endoscopy-based population. Int J Cancer 122(8):1842–1848. doi:10.1002/ijc.23246 PubMedCrossRefGoogle Scholar
  30. 30.
    Sameer AS, Shah ZA, Syeed N, Rasool R, Afroze D, Siddiqi MA (2010) NAD(P)H:quinone oxidoreductase 1 (NQO1) Pro187Ser polymorphism and colorectal cancer predisposition in the ethnic Kashmiri population. Asian Pac J Cancer Prev 11(1):209–213PubMedGoogle Scholar
  31. 31.
    Harth V, Donat S, Ko Y, Abel J, Vetter H, Brüning T (2000) NAD(P)H quinone oxidoreductase 1 codon 609 polymorphism and its association to colorectal cancer. Arch Toxicol 73(10–11):528–531. doi:10.1007/s002040050004 PubMedCrossRefGoogle Scholar
  32. 32.
    Hamajima N, Matsuo K, Iwata H, Shinoda M, Yamamura Y, Kato T, Hatooka S, Mitsudomi T, Suyama M, Kagami Y, Ogura M, Ando M, Sugimura Y, Tajima K (2002) NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism and the risk of eight cancers for Japanese. Int J Clin Oncol 7(2):103–108. doi:10.1007/s101470200013 PubMedGoogle Scholar
  33. 33.
    Hou L, Chatterjee N, Huang WY, Baccarelli A, Yadavalli S, Yeager M, Bresalier RS, Chanock SJ, Caporaso NE, Ji BT, Weissfeld JL, Hayes RB (2005) CYP1A1 Val462 and NQO1 Ser187 polymorphisms, cigarette use, and risk for colorectal adenoma. Carcinogenesis 26(6):1122–1128. doi:10.1093/carcin/bgi054 PubMedCrossRefGoogle Scholar
  34. 34.
    Nisa H, Kono S, Yin G, Toyomura K, Nagano J, Mibu R, Tanaka M, Kakeji Y, Maehara Y, Okamura T, Ikejiri K, Futami K, Maekawa T, Yasunami Y, Takenaka K, Ichimiya H, Terasaka R (2010) Cigarette smoking, genetic polymorphisms and colorectal cancer risk: the Fukuoka Colorectal Cancer Study. BMC Cancer 10:274. doi:10.1186/1471-2407-10-274 PubMedCrossRefGoogle Scholar
  35. 35.
    Hlavata I, Vrana D, Smerhovsky Z, Pardini B, Naccarati A, Vodicka P, Novotny J, Mohelnikova-Duchonova B, Soucek P (2010) Association between exposure-relevant polymorphisms in CYP1B1, EPHX1, NQO1, GSTM1, GSTP1 and GSTT1 and risk of colorectal cancer in a Czech population. Oncol Rep 24(5):1347–1353. doi:10.3892/or_00000992 PubMedGoogle Scholar
  36. 36.
    Sachse C, Smith G, Wilkie MJ, Barrett JH, Waxman R, Sullivan F, Forman D, Bishop DT, Wolf CR, Colorectal Cancer Study Group (2002) A pharmacogenetic study to investigate the role of dietary carcinogens in the etiology of colorectal cancer.Carcinogenesis 23(11):1839–1849. doi:10.1093/carcin/23.11.1839 PubMedCrossRefGoogle Scholar
  37. 37.
    Begleiter A, Hewitt D, Maksymiuk AW, Ross DA, Bird RP (2006) A NAD(P)H:quinone oxidoreductase 1 polymorphism is a risk factor for human colon cancer. Cancer Epidemiol Biomarkers Prev 15(12):2422–2426. doi:10.1158/1055-9965.EPI-06-0661 PubMedCrossRefGoogle Scholar
  38. 38.
    Northwood EL, Elliott F, Forman D, Barrett JH, Wilkie MJ, Carey FA, Steele RJ, Wolf R, Bishop T, Smith G (2010) Polymorphisms in xenobiotic metabolizing enzymes and diet influence colorectal adenoma risk. Pharmacogenet Genomics 20(5):315–326. doi:10.1097/FPC.0b013e3283395c6a PubMedCrossRefGoogle Scholar
  39. 39.
    Ross D, Siegel D, Beall H, Prakash AS, Mulcahy RT, Gibson NW (1993) DT-diaphorase in activation and detoxification of quinones. Cancer Metast Rev 12(2):83–101. doi:10.1007/BF00689803 CrossRefGoogle Scholar
  40. 40.
    Begleiter A, Sivananthan K, Curphey TJ, Bird RP (2003) Induction of NAD(P)H quinone:oxidoreductase1 inhibits carcinogen induced aberrant crypt foci in colons of Sprague–Dawley rats. Cancer Epidemiol Biomarkers Prev 12:566–572PubMedGoogle Scholar
  41. 41.
    Asher G, Lotem J, Cohen B, Sachs L, Shaul Y (2001) Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proc Natl Acad Sci USA 98(3):1188–1193. doi:10.1073/pnas.021558898 PubMedCrossRefGoogle Scholar
  42. 42.
    Long DJ II, Gaikwad A, Multani A, Pathak S, Montgomery CA, Gonzalez FJ, Jaiswal AK (2002) Disruption of the NAD(P)H:quinone oxidoreductase 1 (NQO1) gene in mice causes myelogenous hyperplasia. Cancer Res 62(11):3030–3036PubMedGoogle Scholar
  43. 43.
    Begleiter A, Robotham E, Lacey G, Leith MK (1989) Increased sensitivity of quinone resistant cells to mitomycin C. Cancer Lett 45(3):173–176. doi:10.1016/0304-3835(89)90073-6 PubMedCrossRefGoogle Scholar
  44. 44.
    Sivananthan K, Bird RP, Maksymiuk AW, Lefas G, Begleiter A (2005) Effect of post-initiation induction of NQO1 by oltipraz on AOM induced colon tumor formation in Sprague–Dawley rats. Proc Amer Assoc Cancer Res 46:581Google Scholar
  45. 45.
    Begleiter A, Leith MK, Curphey TJ, Doherty GP (1997) Induction of DT-diaphorase in cancer chemoprevention and chemotherapy. Oncol Res 9(6–7):371–382PubMedGoogle Scholar
  46. 46.
    Jaiswal AK, McBride OW, Adesnik M, Nebert DW (1988) Human dioxin-inducible cytosolic NAD(P)H:menadione oxidoreductase cDNA sequence and localization of gene to chromosome 16. J Biol Chem 263(27):13572–13578PubMedGoogle Scholar
  47. 47.
    Kelsey KT, Ross RD et al (1997) Ethnic variation in the prevalence of a common NAD(P)H quinone oxidoreductase polymorphism and its implications for anti-cancer chemotherapy. Br J Cancer 76(7):852–854PubMedCrossRefGoogle Scholar
  48. 48.
    Misra V, Klamut HJ, Rauth AM (1998) Transfection of COS-1 cells with DT-diaphorase cDNA: role of a base change at position 609. Br J Cancer 77(8):1236–1240PubMedCrossRefGoogle Scholar
  49. 49.
    Begleiter A, Leith MK, Dohert GP, Digby TJ, Pan S (2001) Factors influencing the induction of DT-diaphorase activity by 1,2-dithiole-3-thione in human tumour cell lines. Biochem Pharmacol 61(8):955–964. doi:10.1016/S0006-2952(01)00537-8 CrossRefGoogle Scholar
  50. 50.
    Traver RD, Horikoshi T, Danenberg KD, Stadbauer TH, Danenberg PV, Ross D, Gibson NW (1992) NAD(P)H: quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res 52(4):797–802PubMedGoogle Scholar
  51. 51.
    Siegel D, Gustafson DL, Dehn DL, Han JY, Boonchoong P, Berliner LJ, Ross D (2004) NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol Pharmacol 65(5):1238–1247. doi:10.1124/mol.65.5.1238 PubMedCrossRefGoogle Scholar
  52. 52.
    Danson S, Ward TH, Butler J, Ranson M (2004) DT-diaphorase: a target for new anticancer drugs. Cancer Treat Rev 30(5):437–449. doi:10.1016/j.ctrv.2004.01.002 PubMedCrossRefGoogle Scholar
  53. 53.
    Ferrari P, Jenab M, Norat T, Moskal A, Slimani N, Olsen A, Tjønneland A, Overvad K, Jensen MK, Boutron-Ruault MC, Clavel-Chapelon F, Morois S, Rohrmann S, Linseisen J, Boeing H, Bergmann M, Kontopoulou D, Trichopoulou A, Kassapa C, Masala G, Krogh V, Vineis P, Panico S, Tumino R, van Gils CH, Peeters P, Bueno-de-Mesquita HB, Ocké MC, Skeie G, Lund E, Agudo A, Ardanaz E, López DC, Sanchez MJ, Quirós JR, Amiano P, Berglund G, Manjer J, Palmqvist R, Van Guelpen B, Allen N, Key T, Bingham S, Mazuir M, Boffetta P, Kaaks R, Riboli E (2007) Lifetime and baseline alcohol intake and risk of colon and rectal cancers in the European prospective investigation into cancer and nutrition (EPIC). Int J Cancer 121(9):2065–2072. doi:10.1002/ijc.22966 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Public HealthAnhui Medical UniversityHefeiChina

Personalised recommendations