International Journal of Colorectal Disease

, Volume 27, Issue 3, pp 277–286

Clinicopathologic features and prognostic analysis of MSI-high colon cancer

  • Chun-Chi Lin
  • Yi-Ling Lai
  • Tzu-Chen Lin
  • Wei-Shone Chen
  • Jeng-Kai Jiang
  • Shung-Haur Yang
  • Huann-Sheng Wang
  • Yuan-Tzu Lan
  • Wen-Yih Liang
  • Hui-Mei Hsu
  • Jen-Kou Lin
  • Shih-Ching Chang
Original Article

Abstract

Purpose

The objectives of the study were to estimate the incidence and clarify the clinicopathologic feature of sporadic microsatellite instability (MSI)-high (MSI-H) colon cancer. Furthermore, the role of MSI in colon cancer prognosis was also investigated.

Methods

Microsatellite status was identified by genotyping. The clinicopathologic differences between two groups (MSI-H vs. MSI-L/S) and the prognostic value of MSI were analyzed.

Results

From 1993 to 2006, 709 sporadic colon cancer patients were enrolled. MSI-H colon cancers showed significant association with poorly differentiated (28.3% vs. 7.2%, p = 0.001), proximally located (76.7% vs. 34.5%, p = 0.001), more high mucin-containing tumor (10.0% vs. 5.1%, p = 0.001) and female predominance (56.7% vs. 30.2%, p = 0.001). In multivariate analysis, MSI-H is an independent factor for better overall survival (HR, 0.459; 95% CI, 0.241–0.872, p = 0.017).

Conclusions

Based on the hospital-based study, MSI-H colon cancers demonstrated distinguished clinicopathologic features from MSI-L/S colon cancers. MSI-H is an independent favorable prognostic factor for overall survival in colon cancer.

Keywords

Colon cancer Prognosis Microsatellite MSI Mismatch repair Replication error 

References

  1. 1.
    Dept. of Health, the executive yuan, R.O.C, (2009) “Cancer registry annual report, Taiwan, R.O.C. (2006).”Google Scholar
  2. 2.
    Soreide K, Janssen EA, Soiland H et al (2006) Microsatellite instability in colorectal cancer. Br J Surg 93:395–406PubMedCrossRefGoogle Scholar
  3. 3.
    Aaltonen LA, Peltomaki P, Leach FS et al (1993) Clues to the pathogenesis of familial colorectal cancer. Science 260:812–816PubMedCrossRefGoogle Scholar
  4. 4.
    Thibodeau SN, French AJ, Cunningham JM et al (1998) Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1. Cancer Res 58:1713–1718PubMedGoogle Scholar
  5. 5.
    Eshleman JR, Markowitz SD (1996) Mismatch repair defects in human carcinogenesis. Hum Mol Genet Spec No:1489–1494Google Scholar
  6. 6.
    Boland CR, Thibodeau SN, Hamilton SR et al (1998) A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257PubMedGoogle Scholar
  7. 7.
    Gafa R, Maestri I, Matteuzzi M et al (2000) Sporadic colorectal adenocarcinomas with high-frequency microsatellite instability. Cancer 89:2025–2037PubMedCrossRefGoogle Scholar
  8. 8.
    Ionov Y, Peinado MA, Malkhosyan S et al (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561PubMedCrossRefGoogle Scholar
  9. 9.
    Jass JR, Do KA, Simms LA et al (1998) Morphology of sporadic colorectal cancer with DNA replication errors. Gut 42:673–679PubMedCrossRefGoogle Scholar
  10. 10.
    Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260:816–819PubMedCrossRefGoogle Scholar
  11. 11.
    Lothe RA, Peltomaki P, Meling GI et al (1993) Genomic instability in colorectal cancer: relationship to clinicopathological variables and family history. Cancer Res 53:5849–5852PubMedGoogle Scholar
  12. 12.
    Benatti P, Gafa R, Barana D et al (2005) Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res 11:8332–8340PubMedCrossRefGoogle Scholar
  13. 13.
    Sinicrope FA, Rego RL, Halling KC et al (2006) Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients. Gastroenterology 131:729–737PubMedCrossRefGoogle Scholar
  14. 14.
    Gryfe R, Kim H, Hsieh ET et al (2000) Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 342:69–77PubMedCrossRefGoogle Scholar
  15. 15.
    Popat S, Hubner R, Houlston RS (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 23:609–618PubMedCrossRefGoogle Scholar
  16. 16.
    Kim GP, Colangelo LH, Wieand HS et al (2007) Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J Clin Oncol 25:767–772PubMedCrossRefGoogle Scholar
  17. 17.
    Curran B, Lenehan K, Mulcahy H et al (2000) Replication error phenotype, clinicopathological variables, and patient outcome in Dukes' B stage II (T3, N0, M0) colorectal cancer. Gut 46:200–204PubMedCrossRefGoogle Scholar
  18. 18.
    Ikeda Y, Oda S, Abe T et al (2001) Features of microsatellite instability in colorectal cancer: comparison between colon and rectum. Oncology 61:168–174PubMedCrossRefGoogle Scholar
  19. 19.
    Kim H, Jen J, Vogelstein B, Hamilton SR (1994) Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol 145:148–156PubMedGoogle Scholar
  20. 20.
    Ishikubo T, Nishimura Y, Yamaguchi K et al (2004) The clinical features of rectal cancers with high-frequency microsatellite instability (MSI-H) in Japanese males. Cancer Lett 216:55–62PubMedCrossRefGoogle Scholar
  21. 21.
    Vasen HF, Watson P, Mecklin JP, Lynch HT (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the international collaborative group on HNPCC. Gastroenterology 116:1453–1456PubMedCrossRefGoogle Scholar
  22. 22.
    Edge SB, Byrd DR, Compton CC et al (2010) AJCC cancer staging manual, 7th edn. Springer, New YorkGoogle Scholar
  23. 23.
    Lin JK, Chang SC, Yang YC, Li AF (2003) Loss of heterozygosity and DNA aneuploidy in colorectal adenocarcinoma. Ann Surg Oncol 10:1086–1094PubMedCrossRefGoogle Scholar
  24. 24.
    Chang S-C, Lin J-K, Yang SH et al (2006) Relationship between genetic alterations and prognosis in sporadic colorectal cancer. Int J Cancer 118:1721–1727PubMedCrossRefGoogle Scholar
  25. 25.
    Chang SC, Lin PC, Yang SH et al (2010) Taiwan hospital-based detection of Lynch syndrome distinguishes 2 types of microsatellite instabilities in colorectal cancers. Surgery 147(5):720–728PubMedCrossRefGoogle Scholar
  26. 26.
    Nehls O, Hass HG, Okech T et al (2009) Prognostic implications of BAX protein expression and microsatellite instability in all non-metastatic stages of primary colon cancer treated by surgery alone. Int J Colorectal Dis 24:655–663PubMedCrossRefGoogle Scholar
  27. 27.
    Elsaleh H, Powell B, Soontrapornchai P et al (2000) p53 gene mutation, microsatellite instability and adjuvant chemotherapy: impact on survival of 388 patients with Dukes' C colon carcinoma. Oncology 58:52–59PubMedCrossRefGoogle Scholar
  28. 28.
    Ribic CM, Sargent DJ, Moore MJ et al (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349:247–257PubMedCrossRefGoogle Scholar
  29. 29.
    Kochhar R, Halling KC, McDonnell S et al (1997) Allelic imbalance and microsatellite instability in resected Duke's D colorectal cancer. Diagn Mol Pathol 6:78–84PubMedCrossRefGoogle Scholar
  30. 30.
    Buckowitz A, Knaebel HP, Benner A et al (2005) Microsatellite instability in colorectal cancer is associated with local lymphocyte infiltration and low frequency of distant metastases. Br J Cancer 92:1746–1753PubMedCrossRefGoogle Scholar
  31. 31.
    Kim ST, Lee J, Park SH et al (2010) Clinical impact of microsatellite instability in colon cancer following adjuvant FOLFOX therapy. Cancer Chemother Pharmacol 66(4):659–667PubMedCrossRefGoogle Scholar
  32. 32.
    Westra JL, Schaapveld M, Hollema H et al (2005) Determination of TP53 mutation is more relevant than microsatellite instability status for the prediction of disease-free survival in adjuvant-treated stage III colon cancer patients. J Clin Oncol 23:5635–5643PubMedCrossRefGoogle Scholar
  33. 33.
    Sinicrope FA, Rego RL, Foster N et al (2006) Microsatellite instability accounts for tumor site-related differences in clinicopathologic variables and prognosis in human colon cancers. Am J Gastroenterol 101:2818–2825PubMedCrossRefGoogle Scholar
  34. 34.
    Guidoboni M, Gafa R, Viel A et al (2001) Microsatellite instability and high content of activated cytotoxic lymphocytes identify colon cancer patients with a favorable prognosis. Am J Pathol 159:297–304PubMedCrossRefGoogle Scholar
  35. 35.
    Samowitz WS, Curtin K, Ma KN et al (2001) Microsatellite instability in sporadic colon cancer is associated with an improved prognosis at the population level. Cancer Epid Bio Prev 10:917–923Google Scholar
  36. 36.
    Deschoolmeester V, Van Damme N, Baay M et al (2008) Microsatellite instability in sporadic colon carcinomas has no independent prognostic value in a Belgian study population. Eur J Cancer 44:2288–2295PubMedCrossRefGoogle Scholar
  37. 37.
    Watanabe T, Wu TT, Catalano PJ et al (2001) Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 344:1196–1206PubMedCrossRefGoogle Scholar
  38. 38.
    Barratt PL, Seymour MT, Stenning SP et al (2002) DNA markers predicting benefit from adjuvant fluorouracil in patients with colon cancer: a molecular study. Lancet 360:1381–1391PubMedCrossRefGoogle Scholar
  39. 39.
    Samowitz WS, Holden JA, Curtin K et al (2001) Inverse relationship between microsatellite instability and K-ras and p53 gene alterations in colon cancer. Am J Pathol 158:1517–1524PubMedCrossRefGoogle Scholar
  40. 40.
    Anwar S, Frayling IM, Scott NA, Carlson GL (2004) Systematic review of genetic influences on the prognosis of colorectal cancer. Br J Surg 91:1275–1291PubMedCrossRefGoogle Scholar
  41. 41.
    Yoon YS, Yu CS, Kim TW et al (2011) Mismatch repair status in sporadic colorectal cancer: immunohistochemistry and microsatellite instability analyses. J Gastroenterol Hepatol. [Epub ahead of print]Google Scholar
  42. 42.
    Lanza G, Gafa R, Santini A et al (2006) Immunohistochemical test for MLH1 and MSH2 expression predicts clinical outcome in stage II and III colorectal cancer patients. J Clin Oncol 24:2359–2367PubMedCrossRefGoogle Scholar
  43. 43.
    Marcus VA, Madlensky L, Gryfe R et al (1999) Immunohistochemistry for hMLH1 and hMSH2: a practical test for DNA mismatch repair-deficient tumors. Am J Surg Pathol 23:1248–1255PubMedCrossRefGoogle Scholar
  44. 44.
    Shia J, Ellis NA, Klimstra DS (2004) The utility of immunohistochemical detection of DNA mismatch repair gene proteins. Virchows Arch 445:431–441PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Chun-Chi Lin
    • 1
    • 2
    • 3
  • Yi-Ling Lai
    • 1
  • Tzu-Chen Lin
    • 1
  • Wei-Shone Chen
    • 1
    • 2
  • Jeng-Kai Jiang
    • 1
    • 2
  • Shung-Haur Yang
    • 1
    • 2
  • Huann-Sheng Wang
    • 1
    • 2
  • Yuan-Tzu Lan
    • 1
    • 2
  • Wen-Yih Liang
    • 4
  • Hui-Mei Hsu
    • 5
  • Jen-Kou Lin
    • 1
    • 2
  • Shih-Ching Chang
    • 1
    • 2
  1. 1.Division of Colon and Rectal Surgery, Department of SurgeryTaipei Veterans General HospitalTaipeiRepublic of China
  2. 2.National Yang-Ming UniversityTaipeiRepublic of China
  3. 3.Department of Medical Research and EducationTaipei Veterans General HospitalTaipeiRepublic of China
  4. 4.Department of PathologyTaipei Veterans General HospitalTaipeiRepublic of China
  5. 5.Oncology Case Manager, Department of NursingTaipei Veterans General HospitalTaipeiRepublic of China

Personalised recommendations