Advertisement

International Journal of Colorectal Disease

, Volume 26, Issue 1, pp 45–51 | Cite as

Hyperfibrinogenemia after preoperative chemoradiotherapy predicts poor response and poor prognosis in rectal cancer

  • Kazushige Kawai
  • Joji Kitayama
  • Nelson H. Tsuno
  • Eiji Sunami
  • Hirokazu Nagawa
Original Article

Abstract

Purpose

Although hyperfibrinogenemia has been reported in patients with colorectal cancer, neither its clinical implications nor the effect of chemoradiotherapy (CRT) on the fibrinogen levels have been fully investigated. We investigated the clinical significance of pre- and post-CRT fibrinogen levels in patients with rectal cancer.

Methods

The medical records of 82 patients with rectal cancer, who had received CRT followed by surgical resection, were retrospectively reviewed. The correlation between the clinicopathological variables and the pre- and post-CRT plasma fibrinogen levels, and that between the changes of fibrinogen, C-reactive protein (CRP), or carcinoembryonic antigen (CEA) levels after CRT and the pathological tumor regression grading was analyzed. Furthermore, the impact of post-CRT fibrinogen levels on the prognosis of these patients was assessed.

Results

Plasma fibrinogen markedly decreased after CRT. The post-CRT fibrinogen level significantly correlated with lymphatic invasion, venous invasion, tumor size, depth of invasion, and the pathological tumor regression grading. The CRT-induced pathological tumor regression grading well correlated with the decrease of fibrinogen level, but not with that of CRP or CEA. Furthermore, patients with high post-CRT fibrinogen had significantly shorter disease-free survival.

Conclusions

Reduction of plasma fibrinogen induced by CRT should be a promising biomarker for evaluating the efficacy of CRT in rectal cancer patients.

Keywords

Rectal cancer Fibrinogen Chemoradiotherapy CRP 

References

  1. 1.
    Tomimaru Y, Yano M, Takachi K, Kishi K, Miyashiro I, Ohue M et al (2006) Plasma D-dimer levels show correlation with number of lymph node metastases in patients with esophageal cancer. J Am Coll Surg 202(1):139–145CrossRefPubMedGoogle Scholar
  2. 2.
    Altiay G, Ciftci A, Demir M, Kocak Z, Sut N, Tabakoglu E et al (2007) High plasma D-dimer level is associated with decreased survival in patients with lung cancer. Clin Oncol R Coll Radiol 19(7):494–498PubMedGoogle Scholar
  3. 3.
    Kilic M, Yoldas O, Keskek M, Ertan T, Tez M, Gocmen E et al (2008) Prognostic value of plasma D-dimer levels in patients with colorectal cancer. Colorectal Dis 10(3):238–241CrossRefPubMedGoogle Scholar
  4. 4.
    Levitan N, Dowlati A, Remick SC, Tahsildar HI, Sivinski LD, Beyth R et al (1999) Rates of initial and recurrent thromboembolic disease among patients with malignancy versus those without malignancy. Risk analysis using Medicare claims data. Med Baltim 78(5):285–291CrossRefGoogle Scholar
  5. 5.
    Yamashita H, Kitayama J, Nagawa H (2005) Hyperfibrinogenemia is a useful predictor for lymphatic metastasis in human gastric cancer. Jpn J Clin Oncol 35(10):595–600CrossRefPubMedGoogle Scholar
  6. 6.
    Yamashita H, Kitayama J, Kanno N, Yatomi Y, Nagawa H (2006) Hyperfibrinogenemia is associated with lymphatic as well as hematogenous metastasis and worse clinical outcome in T2 gastric cancer. BMC Cancer 6:147CrossRefPubMedGoogle Scholar
  7. 7.
    Yamashita H, Kitayama J, Taguri M, Nagawa H (2009) Effect of preoperative hyperfibrinogenemia on recurrence of colorectal cancer without a systemic inflammatory response. World J Surg 33(6):1298–1305CrossRefPubMedGoogle Scholar
  8. 8.
    ten Cate H, Falanga A (2008) Overview of the postulated mechanisms linking cancer and thrombosis. Pathophysiol Haemost Thromb 36(3–4):122–130PubMedGoogle Scholar
  9. 9.
    Sauer R, Becker H, Hohenberger W, Rodel C, Wittekind C, Fietkau R et al (2004) Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351(17):1731–1740CrossRefPubMedGoogle Scholar
  10. 10.
    Watanabe T, Nagawa H (2004) Sphincter preservation in locally advanced rectal cancer due to the addition of continuous infusion 5-FU to preoperative radiation therapy or advances in surgical techniques? Int J Radiat Oncol Biol Phys 59(2):618, author reply 618PubMedGoogle Scholar
  11. 11.
    Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L et al (2006) Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med 355(11):1114–1123CrossRefPubMedGoogle Scholar
  12. 12.
    Fu CG, Tominaga O, Nagawa H, Nita ME, Masaki T, Ishimaru G et al (1998) Role of p53 and p21/WAF1 detection in patient selection for preoperative radiotherapy in rectal cancer patients. Dis Colon Rectum 41(1):68–74CrossRefPubMedGoogle Scholar
  13. 13.
    Marquardt F, Rodel F, Capalbo G, Weiss C, Rodel C (2009) Molecular targeted treatment and radiation therapy for rectal cancer. Strahlenther Onkol 185(6):371–378CrossRefPubMedGoogle Scholar
  14. 14.
    Kuremsky JG, Tepper JE, McLeod HL (2009) Biomarkers for response to neoadjuvant chemoradiation for rectal cancer. Int J Radiat Oncol Biol Phys 74(3):673–688CrossRefPubMedGoogle Scholar
  15. 15.
    Kikuchi M, Mikami T, Sato T, Tokuyama W, Araki K, Watanabe M et al (2009) High Ki67, Bax, and thymidylate synthase expression well correlates with response to chemoradiation therapy in locally advanced rectal cancers: proposal of a logistic model for prediction. Br J Cancer 101(1):116–123CrossRefPubMedGoogle Scholar
  16. 16.
    Komuro Y, Watanabe T, Hosoi Y, Matsumoto Y, Nakagawa K, Tsuno N et al (2002) The expression pattern of Ku correlates with tumor radiosensitivity and disease free survival in patients with rectal carcinoma. Cancer 95(6):1199–1205CrossRefPubMedGoogle Scholar
  17. 17.
    Komuro Y, Watanabe T, Tsurita G, Muto T, Nagawa H (2005) Evaluating the combination of molecular prognostic factors in tumor radiosensitivity in rectal cancer. Hepatogastroenterology 52(63):666–671PubMedGoogle Scholar
  18. 18.
    Komuro Y, Watanabe T, Tsurita G, Muto T, Nagawa H (2005) Expression pattern of telomerase reverse transcriptase in rectal carcinoma predicts tumor radiosensitivity, local recurrence and disease-free survival. Hepatogastroenterology 52(64):985–989PubMedGoogle Scholar
  19. 19.
    Dworak O, Keilholz L, Hoffmann A (1997) Pathological features of rectal cancer after preoperative radiochemotherapy. Int J Colorectal Dis 12(1):19–23CrossRefPubMedGoogle Scholar
  20. 20.
    Marchena J, Acosta MA, Garcia-Anguiano F, Simpson H, Cruz F (2003) Use of the preoperative levels of CEA in patients with colorectal cancer. Hepatogastroenterology 50(52):1017–1020PubMedGoogle Scholar
  21. 21.
    Redman CM, Xia H (2001) Fibrinogen biosynthesis. Assembly, intracellular degradation, and association with lipid synthesis and secretion. Ann NY Acad Sci 936:480–495CrossRefPubMedGoogle Scholar
  22. 22.
    Martini WZ (2009) Fibrinogen metabolic responses to trauma. Scand J Trauma Resusc Emerg Med 17(1):2CrossRefPubMedGoogle Scholar
  23. 23.
    Collen D, Tytgat GN, Claeys H, Piessens R (1972) Metabolism and distribution of fibrinogen. I. Fibrinogen turnover in physiological conditions in humans. Br J Haematol 22(6):681–700CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang Z, Fuller GM (2000) Interleukin 1beta inhibits interleukin 6-mediated rat gamma fibrinogen gene expression. Blood 96(10):3466–3472PubMedGoogle Scholar
  25. 25.
    Albrecht U, Yang X, Asselta R, Keitel V, Tenchini ML, Ludwig S et al (2007) Activation of NF-kappaB by IL-1beta blocks IL-6-induced sustained STAT3 activation and STAT3-dependent gene expression of the human gamma-fibrinogen gene. Cell Signal 19(9):1866–1878CrossRefPubMedGoogle Scholar
  26. 26.
    Grieninger G, Plant PW, Liang TJ, Kalb RG, Amrani D, Mosesson MW et al (1983) Hormonal regulation of fibrinogen synthesis in cultured hepatocytes. Ann NY Acad Sci 408:469–489CrossRefPubMedGoogle Scholar
  27. 27.
    Seebacher V, Polterauer S, Grimm C, Husslein H, Leipold H, Hefler-Frischmuth K et al (2010) The prognostic value of plasma fibrinogen levels in patients with endometrial cancer: a multi-centre trial. Br J Cancer 102(6):952–956CrossRefPubMedGoogle Scholar
  28. 28.
    Rybarczyk BJ, Simpson-Haidaris PJ (2000) Fibrinogen assembly, secretion, and deposition into extracellular matrix by MCF-7 human breast carcinoma cells. Cancer Res 60(7):2033–2039PubMedGoogle Scholar
  29. 29.
    Yamaguchi T, Yamamoto Y, Yokota S, Nakagawa M, Ito M, Ogura T (1998) Involvement of interleukin-6 in the elevation of plasma fibrinogen levels in lung cancer patients. Jpn J Clin Oncol 28(12):740–744CrossRefPubMedGoogle Scholar
  30. 30.
    Panes J, Granger DN (1996) Neutrophils generate oxygen free radicals in rat mesenteric microcirculation after abdominal irradiation. Gastroenterology 111(4):981–989CrossRefPubMedGoogle Scholar
  31. 31.
    Debucquoy A, Goethals L, Geboes K, Roels S, McBride WH, Haustermans K (2006) Molecular responses of rectal cancer to preoperative chemoradiation. Radiother Oncol 80(2):172–177CrossRefPubMedGoogle Scholar
  32. 32.
    Wichmann MW, Meyer G, Adam M, Hochtlen-Vollmar W, Angele MK, Schalhorn A et al (2003) Detrimental immunologic effects of preoperative chemoradiotherapy in advanced rectal cancer. Dis Colon Rectum 46(7):875–887CrossRefPubMedGoogle Scholar
  33. 33.
    Simpson-Haidaris PJ, Rybarczyk B (2001) Tumors and fibrinogen. The role of fibrinogen as an extracellular matrix protein. Ann NY Acad Sci 936:406–425CrossRefPubMedGoogle Scholar
  34. 34.
    Palumbo JS, Potter JM, Kaplan LS, Talmage K, Jackson DG, Degen JL (2002) Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Res 62(23):6966–6972PubMedGoogle Scholar
  35. 35.
    Zheng S, Shen J, Jiao Y, Liu Y, Zhang C, Wei M et al (2009) Platelets and fibrinogen facilitate each other in protecting tumor cells from natural killer cytotoxicity. Cancer Sci 100(5):859–865CrossRefPubMedGoogle Scholar
  36. 36.
    Brown NJ, Staton CA, Rodgers GR, Corke KP, Underwood JC, Lewis CE (2002) Fibrinogen E fragment selectively disrupts the vasculature and inhibits the growth of tumours in a syngeneic murine model. Br J Cancer 86(11):1813–1816CrossRefPubMedGoogle Scholar
  37. 37.
    Akakura N, Hoogland C, Takada YK, Saegusa J, Ye X, Liu FT et al (2006) The COOH-terminal globular domain of fibrinogen gamma chain suppresses angiogenesis and tumor growth. Cancer Res 66(19):9691–9697CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Kazushige Kawai
    • 1
  • Joji Kitayama
    • 1
  • Nelson H. Tsuno
    • 1
  • Eiji Sunami
    • 1
  • Hirokazu Nagawa
    • 1
  1. 1.Department of Surgical Oncology, Faculty of MedicineThe University of TokyoTokyoJapan

Personalised recommendations