International Journal of Colorectal Disease

, Volume 26, Issue 1, pp 1–11 | Cite as

Stem cells in colon cancer. A new era in cancer theory begins

  • Joanna Papailiou
  • Konstaninos J. Bramis
  • Maria Gazouli
  • George Theodoropoulos



Despite the various therapeutic combinations and the emergence of new targeted therapies, there is still no curative treatment for all stages of colorectal cancer. Through the query for the best possible combination and solution, a new theory approaching colorectal cancer as a stem cell disease appeared, with a continuously growing body of evidence supporting this idea. The inability to directly recognize cancer stem cells has led researchers to an attempt of distinguishing those using indirect markers.


This review focuses on colon cancer stem cell theory, the various findings supporting and contradicting this hypothesis, and the markers used up to now in characterizing stem cell populations in colorectal cancer. Despite the numerous unanswered questions on this new cancer hypothesis, it appears to have a justifiable role to play in colorectal cancer tumor biology, and furthermore, it may be the basis for the development of new therapeutic agents of the future. Therefore, every surgeon, oncologist, and physician who is implicated with this disease should be familiar with this novel colorectal cancer theory.


Colorectal cancer Stem cells CRT Chemoradiotherapy CSC theory 


  1. 1.
    Ferlay J, Autier P, Heanue M et al (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18:581–592CrossRefPubMedGoogle Scholar
  2. 2.
    Boman BM, Wicha MS (2008) Cancer stem cells: a step toward the cure. J Clin Oncol 26:2795–2799CrossRefPubMedGoogle Scholar
  3. 3.
    Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons from a crypt. Development 110:1001–1020PubMedGoogle Scholar
  4. 4.
    Brittan M, Wright NA (2002) Gastrointestinal stem cells. J Pathol 197:492–509CrossRefPubMedGoogle Scholar
  5. 5.
    Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850CrossRefPubMedGoogle Scholar
  6. 6.
    Willis ND, Przyborski SA, Hutchison CJ et al (2008) Colonic and colorectal cancer stem cells: progress in the search for putative biomarkers. J Anat 213:59–65CrossRefPubMedGoogle Scholar
  7. 7.
    Potten CS, Grant HK (1998) The relationship between ionizing radiation-induced apoptosis and stem cells in the small and large intestine. Brit J Cancer 78:993–1003PubMedGoogle Scholar
  8. 8.
    Meritt AJ, Potten CS, Watson AJM et al (1995) Differential expression of bcl-2 in intestinal epithelia. Correlation with attenuation of apoptosis in colonic crypts and the incidence of colonic neoplasia. J Cell Sci 198:2261–2271Google Scholar
  9. 9.
    O’Brien CA, Pollett A, Gallinger S et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110CrossRefPubMedGoogle Scholar
  10. 10.
    Nguyen NP, Almeida FS, Chi A et al (2010) Molecular biology of breast cancer stem cells: potential clinical applications. Cancer Treat Rev 2010 (In press)Google Scholar
  11. 11.
    Oliveira LR, Jeffrey SS, Ribeiro-Silva A (2010) Stem cells in human breast cancer. Histol Histopathol 25:371–385PubMedGoogle Scholar
  12. 12.
    Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401CrossRefPubMedGoogle Scholar
  13. 13.
    Kim CF, Jackson EL, Woolfenden AE et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835CrossRefPubMedGoogle Scholar
  14. 14.
    Ma S, Chan KW, Hu L et al (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132:2542–2556CrossRefPubMedGoogle Scholar
  15. 15.
    Schatton T, Murphy GF, Frank NY et al (2008) Identification of cells initiating human melanomas. Nature 451:345–349CrossRefPubMedGoogle Scholar
  16. 16.
    Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037CrossRefPubMedGoogle Scholar
  17. 17.
    Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902CrossRefPubMedGoogle Scholar
  18. 18.
    Gaziova I, Bhat KM (2007) Generating asymmetry: with and without renewal. Prog Mol Subcell Biol 45:143–178CrossRefPubMedGoogle Scholar
  19. 19.
    Bach S, Renehan A, Potten C (2000) Stem cells: the intestinal stem cell as a paradigm. Carcinogenesis 21:469–476CrossRefPubMedGoogle Scholar
  20. 20.
    Karam SM (1999) Lineage commitment and maturation of epithelial cells in the gut. Frontiers Biosci 4:286–298CrossRefGoogle Scholar
  21. 21.
    Fevr T, Robine S, Louvard D, Huelsken J (2007) Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol 27:7551–7559CrossRefPubMedGoogle Scholar
  22. 22.
    Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7:349–359CrossRefPubMedGoogle Scholar
  23. 23.
    van Es JH, Clevers H (2005) Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. Trends Mol Med 11:496–502CrossRefPubMedGoogle Scholar
  24. 24.
    Kosinski C, Li VSW, Chan ASY et al (2007) Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci USA 104:15418–15423CrossRefPubMedGoogle Scholar
  25. 25.
    Potten CS (1992) The significance of spontaneous and induced apoptosis in the gastrointestinal tract of mice. Cancer Metastasis Rev 179–195Google Scholar
  26. 26.
    Watson AJ, Merritt AJ, Jones LS et al (1996) Evidence of reciprocity of bcl-2 and p53 expression in human colorectal adenomas and carcinomas. Br J Cancer 73:889–895PubMedGoogle Scholar
  27. 27.
    Wilson JW, Nostro MC, Balzi M et al (2000) Bcl-w expression in colorectal adenocarcinoma. Br J Cancer 82:178–185CrossRefPubMedGoogle Scholar
  28. 28.
    Kirkland SC (1988) Clonal origin of columnar, mucous, and endocrine cell lineages in human colorectal epithelium. Cancer 61:1359–1363CrossRefPubMedGoogle Scholar
  29. 29.
    Yatabe Y, Tavare S, Shibata D (2001) Investigating stem cells in human colon by using methylation patterns. Proc Natl Acad Sci USA 98:10839–10844CrossRefPubMedGoogle Scholar
  30. 30.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111CrossRefPubMedGoogle Scholar
  31. 31.
    Cicalese A, Bonizzi G, Pasi CE et al (2009) The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138:1083–1095CrossRefPubMedGoogle Scholar
  32. 32.
    Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170CrossRefPubMedGoogle Scholar
  33. 33.
    Fearon ER, Hamilton SR, Vogelstein B (1987) Clonal analysis of human colorectal tumors. Science 238:193–197CrossRefPubMedGoogle Scholar
  34. 34.
    Fabian A, Barok M, Vereb G et al (2009) Die hard: are cancer stem cells the Bruce Willises of tumor biology? Cytom A 75:67–74CrossRefGoogle Scholar
  35. 35.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737CrossRefPubMedGoogle Scholar
  36. 36.
    Houghton J, Stoicov C, Nomura S et al (2004) Gastric cancer originating from bone marrow-derived cells. Science 306:1568–1571CrossRefPubMedGoogle Scholar
  37. 37.
    Ricci-Vitiani L, Fabrizi E, Palio E et al (2009) Colon cancer stem cells. J Mol Med 87:1097–1104CrossRefPubMedGoogle Scholar
  38. 38.
    Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337CrossRefPubMedGoogle Scholar
  39. 39.
    Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121CrossRefPubMedGoogle Scholar
  40. 40.
    Shackleton M, Vaillant F, Simpson KJ, Stingl J et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88CrossRefPubMedGoogle Scholar
  41. 41.
    Corbeil D, Roper K, Hellwig A et al (2000) The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 275:5512–5520CrossRefPubMedGoogle Scholar
  42. 42.
    Corbeil D, Roper K, Fargeas CA et al (2001) Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2:82–91CrossRefPubMedGoogle Scholar
  43. 43.
    Haraguchi N, Utsunomiya T, Inoue H et al (2006) Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 24:506–513CrossRefPubMedGoogle Scholar
  44. 44.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115CrossRefPubMedGoogle Scholar
  45. 45.
    Hermann PC, Huber SL, Herrler T et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323CrossRefPubMedGoogle Scholar
  46. 46.
    Zhu L, Gibson P, Currle DS et al (2009) Promini1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–607CrossRefPubMedGoogle Scholar
  47. 47.
    Immervoll H, Hoem D, Sakariassen PO et al (2008) Expression of the “stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 8:48CrossRefPubMedGoogle Scholar
  48. 48.
    Saigusa S, Tanaka K, Toiyama Y et al (2009) Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann Surg Oncol 6(12):3488–3498CrossRefGoogle Scholar
  49. 49.
    Horst D, Kriegl L, Engel J et al (2008) CD133 expression is an independent prognostic marker for low survival in colorectal cancer. Br J Cancer 99(8):1285–1289CrossRefPubMedGoogle Scholar
  50. 50.
    Sparks AB, Morin PJ, Vogelstein B, Kinzler KW (1998) Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res 58:1130–1134PubMedGoogle Scholar
  51. 51.
    Bienz M, Clevers H (2000) Linking colorectal cancer to Wnt signaling. Cell 103:311–320CrossRefPubMedGoogle Scholar
  52. 52.
    Horst D, Kriegl L, Engel J et al (2009) CD133 and nuclear β-catenin: the marker combination to detect high risk cases of low stage colorectal cancer. Eur J Cancer 45:2034–40CrossRefPubMedGoogle Scholar
  53. 53.
    Corbeil D, Röper K, Hellwig A et al (2000) The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 275:5512–5520CrossRefPubMedGoogle Scholar
  54. 54.
    Shmelkov SV, Butler JM, Hooper AT et al (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest 118:2111–2120PubMedGoogle Scholar
  55. 55.
    Lin EH, Hassan M, Li Y et al (2007) Elevated circulating endothelial progenitor marker CD133 messenger RNA levels predict colon cancer recurrence. Cancer 110:534–542CrossRefPubMedGoogle Scholar
  56. 56.
    Ieta K, Tanaka F, Haraguchi N et al (2008) Biological and genetic characteristics of tumor-initiating cells in colon cancer. Ann Surg Oncol 15:638–648CrossRefPubMedGoogle Scholar
  57. 57.
    Choi D, Lee HW, Hur KY et al (2009) Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal adenocarcinoma. World J Gastroenterol 15:2258–2264CrossRefPubMedGoogle Scholar
  58. 58.
    Lim SC, Oh SH (2005) The role of CD24 in various human epithelial neoplasias. Pathol Res Pract 201:479–486CrossRefPubMedGoogle Scholar
  59. 59.
    Weichert W, Denkert C, Burkhardt M et al (2005) Cytoplasmic CD24 expression in colorectal cancer independently correlates with shortened patient survival. Clin Cancer Res 11:6574–6581CrossRefPubMedGoogle Scholar
  60. 60.
    Horst D, Sheel SK, Liebmann S et al (2009) The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer. J Pathol 219:427–434CrossRefPubMedGoogle Scholar
  61. 61.
    Cheng L, Sung MT, Cossu-Rocca P et al (2007) OCT4: biological functions and clinical applications as a marker of germ cell neoplasia. J Pathol 211:1–9CrossRefPubMedGoogle Scholar
  62. 62.
    Sotomayor P, Godoy A, Smith GJ (2008) Oct4A is expressed by a subpopulation of prostate neuroendocrine cells. Prostate 69:401–410CrossRefGoogle Scholar
  63. 63.
    Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–477CrossRefPubMedGoogle Scholar
  64. 64.
    Yamanaka S (2008) Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif 41:51–56CrossRefPubMedGoogle Scholar
  65. 65.
    Ben-Porath I, Thomson MW, Carey VJ et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507CrossRefPubMedGoogle Scholar
  66. 66.
    Schoenhals M, Kassambara A, De Vos J et al (2009) Embryonic stem cell markers expression in cancers. Biochem Biophys Res Commun 383:157–162CrossRefPubMedGoogle Scholar
  67. 67.
    Rodriguez-Pinilla SM, Sarrio D, Moreno-Bueno G et al (2007) Sox2: a possible driver of the basal-like phenotype in sporadic breast cancer. Mod Pathol 20:474–481CrossRefPubMedGoogle Scholar
  68. 68.
    Gu G, Yuan J, Wills M, Kasper S (2007) Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 67:4807–4815CrossRefPubMedGoogle Scholar
  69. 69.
    Tsukamoto T, Mizoshita T, Mihara M et al (2005) Sox2 expression in human stomach adenocarcinomas with gastric and gastric-and intestinal-mixed phenotypes. Histopathology 46:649–658CrossRefPubMedGoogle Scholar
  70. 70.
    Evans PM, Liu C (2008) Roles of Kruppel-like factor 4 in normal homeostasis, cancer and stem cells. Acta Biochem Biophys Sin (Shanghai) 40:554–564CrossRefGoogle Scholar
  71. 71.
    McConnell BB, Ghaleb AM, Nandan MO, Yang VW (2007) The diverse functions of Kruppel-like factors 4 and 5 in epithelial biology and pathobiology. Bioessays 29:549–557CrossRefPubMedGoogle Scholar
  72. 72.
    Wei D, Kanai M, Huang S, Xie K (2006) Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis 27:23–31CrossRefPubMedGoogle Scholar
  73. 73.
    Rowland BD, Peeper DS (2006) KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 6:11–23CrossRefPubMedGoogle Scholar
  74. 74.
    Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6:635–645CrossRefPubMedGoogle Scholar
  75. 75.
    Kim JB, Zaehres H, Wu G et al (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650CrossRefPubMedGoogle Scholar
  76. 76.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317CrossRefPubMedGoogle Scholar
  77. 77.
    Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324CrossRefPubMedGoogle Scholar
  78. 78.
    Eilers M, Eisenman RN (2008) Myc’s broad reach. Genes Dev 22:2755–2766CrossRefPubMedGoogle Scholar
  79. 79.
    Schulein C, Eilers M (2009) An unsteady scaffold for Myc. EMBO 28:453–454CrossRefGoogle Scholar
  80. 80.
    Welcker M, Orian A, Jin J et al (2004) The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 101:9085–9090CrossRefPubMedGoogle Scholar
  81. 81.
    Arnold HK, Zhang X, Daniel CJ et al (2009) The Axin1 scaffold protein promotes formation of a degradation complex for c-Myc. EMBO J 28:500–512CrossRefPubMedGoogle Scholar
  82. 82.
    Yada M, Hatakeyama S, Kamura T et al (2004) Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 23:2116–2125CrossRefPubMedGoogle Scholar
  83. 83.
    Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, Vogelstein B, Lengauer C (2004) Inactivation of hCDC4 can cause chromosomal instability. Nature 428:77–81CrossRefPubMedGoogle Scholar
  84. 84.
    Popov N, Wanzel M, Madiredjo M et al (2007) The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol 9:765–774CrossRefPubMedGoogle Scholar
  85. 85.
    Haegebarth A, Clevers H (2009) Wnt signaling, Lgr5, and stem cells in the intestine and the skin. Am J Pathol 174:715–21CrossRefPubMedGoogle Scholar
  86. 86.
    Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007CrossRefPubMedGoogle Scholar
  87. 87.
    Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265CrossRefPubMedGoogle Scholar
  88. 88.
    Barker N, Ridgway RA, van Es JH et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–612CrossRefPubMedGoogle Scholar
  89. 89.
    Kaneko Y, Sakakibara S, Imai T et al (2000) Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci 22:139–153CrossRefPubMedGoogle Scholar
  90. 90.
    Booth C, Potten CS (2000) Gut instincts: thoughts on intestinal epithelial stem cells. J Clin Invest 105:1493–1499CrossRefPubMedGoogle Scholar
  91. 91.
    Nishimura S, Wakabayashi N, Toyoda K et al (2003) Expression of Musashi-1 in human normal colon crypt cells: a possible stem cell marker of human colon epithelium. Dig Dis Sci 48:1523–1529CrossRefPubMedGoogle Scholar
  92. 92.
    Fujimoto K, Beauchamp RD, Whitehead RH (2002) Identification and isolation of candidate human colonic clonogenic cells based on cell surface integrin expression. Gastroenterology 123:1941–1948CrossRefPubMedGoogle Scholar
  93. 93.
    Howe A, Aplin AE, Alahari SK et al (1998) Integrin signaling and cell growth control. Curr Opin Cell Biol 10:220–231CrossRefPubMedGoogle Scholar
  94. 94.
    Huang EH, Hynes MJ, Zhang T et al (2009) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69:3382–3389CrossRefPubMedGoogle Scholar
  95. 95.
    Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760CrossRefPubMedGoogle Scholar
  96. 96.
    Todaro M, Perez Alea M, Scopelliti A et al (2008) IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle 7:309–313CrossRefPubMedGoogle Scholar
  97. 97.
    Donnenberg VS, Landreneau RJ, Donnenberg AD (2007) Tumorigenic stem and progenitor cells: implications for the therapeutic index of anti-cancer agents. J Control Release 122:385–391CrossRefPubMedGoogle Scholar
  98. 98.
    May R, Riehl TE, Hunt C, Sureban SM, Anant S, Houchen CW (2008) Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice. Stem Cells 26:630–337CrossRefPubMedGoogle Scholar
  99. 99.
    Dalebra P, Dylla SJ, Park IK et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104:10158–10163CrossRefGoogle Scholar
  100. 100.
    Todaro M, Francipane MG, Medema JP, Stassi G (2001) Colon cancer stem cells: promise of targeted therapy. Gastroenterology 138:2151–2162CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Joanna Papailiou
    • 1
  • Konstaninos J. Bramis
    • 2
  • Maria Gazouli
    • 3
  • George Theodoropoulos
    • 1
  1. 1.1st Department of Propaedeutic Surgery, Hippokratio Hospital, School of MedicineUniversity of AthensAthensGreece
  2. 2.1st Propaideutic Surgical DepartmentLaikon University HospitalAthensGreece
  3. 3.Department of Biology, School of MedicineUniversity of AthensAthensGreece

Personalised recommendations