Skip to main content

Advertisement

Log in

TCF-3, 4 protein expression correlates with β-catenin expression in MSS and MSI-H colorectal cancer from HNPCC patients but not in sporadic colorectal cancers

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

The β-catenin–T-cell factor-4 (TCF-4) complex is the main control switch of cell proliferation and differentiation of normal and malignant intestinal cells. The aim of our study was to analyze the protein expression of components of the Wnt pathway in microsatellite stable (MSS) and highly unstable (MSI-H) sporadic and hereditary nonpolyposis colorectal cancer (HNPCC) in human colorectal cancers.

Methods

Sixty seven colorectal tumors comprising of 15 sporadic MSS, 12 sporadic microsatellite instability colorectal tumors and 40 tumors from HNPCC patients, of which 20 were MSS and 20 MSI-H, were analyzed for the expression of APC, β-catenin, and TCF-3, 4 proteins by immunohistochemistry.

Results

We found a significant difference in cytoplasmic APC expression frequency between sporadic MSS (52%) and HNPCC tumors (78%), whereas no difference was detected between MSI-H and MSS or HNPCC tumors. All tumor groups showed a similar pattern of decreased membranous staining and increased cytoplasmic and nuclear staining for β-catenin compared to normal cells. Moreover, the TCF-3, 4 protein expression was higher (43%) in HNPCC-associated MSS tumors compared to sporadic tumors (14%; analysis of variance (ANOVA) p < 0.05). For HNPCC tumors, the subcellular β-catenin expression (membranous, cytoplasmic, and nuclear) correlated with the nuclear TCF-3, 4 signal in MSS tumors (Spearman correlation p < 0.0007) and MSI-H tumors (Spearman correlation p < 0.0001).

Conclusion

We have shown a previously unknown difference in TCF-3, 4 protein expression between sporadic and HNPCC MSS tumors. In addition, we found no difference in nuclear β-catenin signal intensity, which may be caused by an alteration in Wnt pathway in MSS sporadic tumors by unknown mechanisms leading to lower TCF-3, 4 protein expression. This hypothesis has to be tested in future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348:919–932

    Article  CAS  PubMed  Google Scholar 

  2. Dietmaier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Rüschoff J (1997) Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 57:4749–4756

    CAS  PubMed  Google Scholar 

  3. Narayan S, Roy D (2002) Role of APC and DNA mismatch repair genes in the development of colorectal cancers. Mol Cancer 2:41

    Article  Google Scholar 

  4. Morin PJ, Vogelstein B, Kinzler KW (1996) Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci 93:7950–7954

    Article  CAS  PubMed  Google Scholar 

  5. Reya T, Clevers H (2005) Wnt signaling in stem cells and cancer. Nature 434:843–850

    Article  CAS  PubMed  Google Scholar 

  6. Xiao JH, Ghosn C, Hinchman C, Forbes C, Wang J, Snider N, Cordrey A, Zhao Y, Chandraratna RA (2003) Adenomatous polyposis coli (APC)-independent regulation of beta-catenin degradation via a retinoid X receptor-mediated pathway. J Biol Chem 278:29954–29962

    Article  CAS  PubMed  Google Scholar 

  7. Duval A, Rolland S, Tubacher E, Bui H, Thomas G, Hamelin R (2000) The human T-cell transcription factor-4 gene: structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines. Cancer Res 60:3872–3879

    CAS  PubMed  Google Scholar 

  8. Kikuchi A, Kishida S, Yamamoto H (2006) Regulation of Wnt signaling by protein–protein interaction and post-translational modifications. Exp Mol Med 38:1–10

    CAS  PubMed  Google Scholar 

  9. Smith G, Carey FA, Beattie J, Wilkie MJ, Lightfoot TJ, Coxhead J, Garner RC, Steele RJ, Wolf CR (2002) Mutations in APC, Kirsten-ras, and p53—alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci 99:9433–9438

    Article  CAS  PubMed  Google Scholar 

  10. Ruckert S, Hiendlmeyer E, Brueckl WM, Oswald U, Beyser K, Dietmaier W, Haynl A, Koch C, Ruschoff J, Brabletz T, Kirchner T, Jung A (2002) T-cell factor-4 frameshift mutations occur frequently in human microsatellite instability-high colorectal carcinomas but do not contribute to carcinogenesis. Cancer Res 62:3009–3013

    CAS  PubMed  Google Scholar 

  11. Rodriguez-Bigas MA, Boland CR, Hamilton SR, Henson DE, Jass JR, Khan PM, Lynch H, Perucho M, Smyrk T, Sobin L, Srivastava S (1997) A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst 89:1758–1762

    Article  CAS  PubMed  Google Scholar 

  12. Plaschke J, Kruger S, Pistorius S, Theissig F, Saeger HD, Schackert HK (2002) Involvement of hMSH6 in the development of hereditary and sporadic colorectal cancer revealed by immunostaining is based on germline mutations, but rarely on somatic inactivation. Int J Cancer 97:643–648

    Article  CAS  PubMed  Google Scholar 

  13. Aust DE, Terdiman JP, Willenbucher RF, Chew K, Ferrell L, Florendo C, Molinaro-Clark A, Baretton GB, Lohrs U, Waldman FM (2001) Altered distribution of beta-catenin, and its binding proteins E-cadherin and APC, in ulcerative colitis-related colorectal cancers. Mod Pathol 14:29–39

    Article  CAS  PubMed  Google Scholar 

  14. Aust DE, Terdiman JP, Willenbucher RF, Chang CG, Molinaro-Clark A, Baretton GB, Loehrs U, Waldman FM (2002) The APC/beta-catenin pathway in ulcerative colitis-related colorectal carcinomas: a mutational analysis. Cancer 94:1421–1427

    Article  CAS  PubMed  Google Scholar 

  15. Bienz M, Clevers H (2000) Linking colorectal cancer to Wnt signaling. Cell 103:311–320

    Article  CAS  PubMed  Google Scholar 

  16. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250

    Article  PubMed  Google Scholar 

  17. Clevers H, Batlle E (2006) EphB/EphrinB receptors and Wnt signaling in colorectal cancer. Cancer Res 66:2–5

    Article  CAS  PubMed  Google Scholar 

  18. Alves-Guerra MC, Ronchini C, Capobianco AJ (2007) Mastermind-like 1 is a specific coactivator of beta-catenin transcription activation and is essential for colon carcinoma cell survival. Cancer Res 67:8690–8698

    Article  CAS  PubMed  Google Scholar 

  19. Van der Flier LG, Sabates-Bellver J, Oving I, Haegebarth A, De Palo M, Anti M, Van Gijn ME, Suijkerbuijk S, Van de Wetering M, Marra G, Clevers H (2007) The intestinal Wnt/TCF signature. Gastroenterology 132:628–632

    Article  PubMed  Google Scholar 

  20. Iwamoto M, Ahnen DJ, Franklin WA, Maltzmann TH (2000) Expression of beta-catenin and full-length APC protein in normal and neoplastic colonic tissues. Carcinogenesis 21:1935–1940

    Article  CAS  PubMed  Google Scholar 

  21. Näthke IS, Adams CL, Polakis P, Sellin JH, Nelson WJ (1996) The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Bio 134:165–179

    Article  Google Scholar 

  22. Rosin Arbesfeld R, Cliffe A, Brabletz T, Bienz M (2003) Nuclear export of the APC tumour supressor controls beta-catenin function in transcription. EMBO J 22:1101–1113

    Article  CAS  PubMed  Google Scholar 

  23. Fagman H, Larsson F, Arvidsson Y, Meuller J, Nordling M, Martinsson T, Helmbrecht K, Brabant G, Nilsson M (2003) Nuclear accumulation of full-length and truncated adenomatous polyposis coli protein in tumor cells depends on proliferation. Oncogene 22:6013–6022

    Article  CAS  PubMed  Google Scholar 

  24. Brocardo M, Naethke IS, Henderson BR (2005) Redefining the subcelullar location and transport of APC: new insights using a panel of antibodies. EMBO Rep 6:184–190

    Article  CAS  PubMed  Google Scholar 

  25. Barker N, Huls G, Korinek V, Clevers H (1999) Restricted high level expression of Tcf-4 protein in intestinal and mammary gland epithelium. Am J Pathol 154:29–35

    CAS  PubMed  Google Scholar 

  26. Duval A, Gayet J, Zhou XP, Iacopetta B, Thomas G, Hamelin R (1999) Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res 59:4213–4215

    CAS  PubMed  Google Scholar 

  27. Cuilliere-Dartigues P, El-Bchiri J, Krimi A, Buhard O, Fontanges P, Flejou JF, Hamelin R, Duval A (2006) TCF-4 isoforms absent in TCF-4 mutated MSI-H colorectal cancer cells colocalize with nuclear CtBP and repress TCF-4-mediated transcription CtBP interacts with some TCF-4 isoforms. Oncogene 25:4441–4448

    Article  CAS  PubMed  Google Scholar 

  28. Fang M, Li J, Blauwkamp T, Bhambhani C, Campbell N, Cadigan KM (2006) C-terminal-binding protein directly activates and represses Wnt transcriptional targets in Drosophila. EMBO J 25:2735–2745

    Article  CAS  PubMed  Google Scholar 

  29. Chang HR, Cheng TL, Liu TZ, Hu HS, Hsu LS, Tseng WC, Chen CH, Tsao DA (2006) Genetic and cellular characterizations of human TCF4 with microsatellite instability in colon cancer and leukemia cell lines. Cancer Lett 233:165–171

    Article  CAS  PubMed  Google Scholar 

  30. Fukushima H, Yamamoto H, Itoh F, Horiuchi S, Min Y, Iku S, Imai K (2001) Frequent alterations of the beta-catenin and TCF-4 genes, but not of the APC gene, in colon cancers with high-frequency microsatellite instability. J Exp Clin Cancer Res 20:553–559

    CAS  PubMed  Google Scholar 

  31. Li H-R, Shagisultanova EI, Yamashita K, Piao Z, Perucho M, Malkhosyan SR (2004) Hypersensitivity of tumor cell lines with microsatellite instability to DNA double strand break producing chemotherapeutic agent bleomycin. Cancer Res 64:4760–4767

    Article  CAS  PubMed  Google Scholar 

  32. Idogawa M, Masutani M, Shitashige M, Honda K, Tokino T, Shinomura Y, Imai K, Hirohashi S, Yamada T (2007) Ku70 and poly(ADP-ribose) polymerase-1 competitively regulate beta-catenin and T-cell factor-4-mediated gene transactivation: possible linkage of DNA damage recognition and Wnt signaling. Cancer Res 67:911–918

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Monika Reichmann for her excellent technical support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans K. Schackert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaz, P., Plaschke, J., Krüger, S. et al. TCF-3, 4 protein expression correlates with β-catenin expression in MSS and MSI-H colorectal cancer from HNPCC patients but not in sporadic colorectal cancers. Int J Colorectal Dis 25, 931–939 (2010). https://doi.org/10.1007/s00384-010-0959-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-010-0959-9

Keywords

Navigation