Elevated expressions of MMP7, TROP2, and survivin are associated with survival, disease recurrence, and liver metastasis of colon cancer

  • Y. J. Fang
  • Z. H. Lu
  • G. Q. Wang
  • Z. Z. Pan
  • Z. W. Zhou
  • J. P. Yun
  • M. F. Zhang
  • D. S. WanEmail author
Original Article



Colorectal cancer is one of the most common cancers worldwide. We tested the hypothesis that differences in the expression of certain molecular markers of colon cancer may account for different clinical outcomes.


Tissue microarray technology was used to assay the expression of 17 biological markers [β-catenin, CD44v7, c-myc, cyclin D1, estrogen receptor β, mitogen-activated protein kinase/extracellular signal-regulated kinase, maspin, matrix metalloproteinase-7 (MMP7), p53, Pin1, peroxisome proliferators-activated receptor-gamma, survivin, T cell transcription factor 4 (TCF4), transforming growth factor beta receptor II (TGFβR II), TGFβ, TROP2, and Wnt] by immunohistochemistry in 620 colon cancer patients. The Cox proportional hazards regression model was applied to analyze the lifetime data, including time to death, time to recurrence, and time to liver metastasis.


All the markers were present at significantly higher expression levels in tumor specimens than in normal colonic specimens. Kaplan–Meier analysis showed that high expression of TROP2, MMP7, and survivin were related to decreased survival; TCF4 and TROP2 were related to disease recurrence; and CD44v7, cyclin D1, MMP7, p53, survivin, and TCF4 were related to liver metastasis. However, the results of the multivariate analysis only showed that expression of MMP7, survivin, and TROP2 were significant predictors of lower patient survival, while TROP2 and MMP7 were significantly related to disease recurrence and liver metastasis, respectively.


We conclude that elevated survivin, MMP7, and TROP2 expression levels are related to decreased survival. In addition, elevated MMP7 and TROP2 expression levels are predictors of disease recurrence and liver metastasis, respectively.


Colon carcinoma Prognosis Disease recurrence Liver metastasis 



Supported by Grant No. 2004B3030102 from the Guangdong Science & Technology Planning Project.


  1. 1.
    Weitz J, Koch M, Debus J, Hohler T, Galle PR, Buchler MW (2005) Colorectal cancer. Lancet 365:153–165PubMedCrossRefGoogle Scholar
  2. 2.
    Graziano F, Cascinu S (2003) Prognostic molecular markers for planning adjuvant chemotherapy trials in Dukes' B colorectal cancer patients: how much evidence is enough? Ann Oncol 14:1026–1038PubMedCrossRefGoogle Scholar
  3. 3.
    McLeod HL, Murray GI (1999) Tumour markers of prognosis in colorectal cancer. Br J Cancer 79:191–203PubMedCrossRefGoogle Scholar
  4. 4.
    Leichman CG (2001) Predictive and prognostic markers in gastrointestinal cancers. Curr Opin Oncol 13:291–299PubMedCrossRefGoogle Scholar
  5. 5.
    Eschrich S, Yang I, Bloom G, Kwong KY, Boulware D, Cantor A et al (2005) Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol 23:3526–3535PubMedCrossRefGoogle Scholar
  6. 6.
    Kuramochi J, Arai T, Ikeda S, Kumagai J, Uetake H, Sugihara K (2006) High Pin1 expression is associated with tumor progression in colorectal cancer. J Surg Oncol 94:155–160PubMedCrossRefGoogle Scholar
  7. 7.
    Kirimlioglu H, Kirimlioglu V, Yilmaz S, Sagir V, Coban S, Turkmen E et al (2006) Role of matrix metalloproteinase-7 in colorectal adenomas. Dig Dis Sci 51:2068–2072PubMedCrossRefGoogle Scholar
  8. 8.
    Ponnelle T, Chapusot C, Martin L, Bouvier AM, Plenchette S, Faivre J et al (2005) Cellular localisation of survivin: impact on the prognosis in colorectal cancer. J Cancer Res Clin Oncol 131:504–510PubMedCrossRefGoogle Scholar
  9. 9.
    Ohmachi T, Tanaka F, Mimori K, Inoue H, Yanaga K, Mori M (2006) Clinical significance of TROP2 expression in colorectal cancer. Clin Cancer Res 12:3057–3063PubMedCrossRefGoogle Scholar
  10. 10.
    Horvath L, Henshall S (2001) The application of tissue microarrays to cancer research. Pathology 33:125–129PubMedCrossRefGoogle Scholar
  11. 11.
    Oving IM, Clevers HC (2002) Molecular causes of colon cancer. Eur J Clin Invest 32:448–457PubMedCrossRefGoogle Scholar
  12. 12.
    Iczkowski KA, Omara-Opyene AL, Kulkarni TR, Pansara M, Shah GV (2005) Paracrine calcitonin in prostate cancer is linked to CD44 variant expression and invasion. Anticancer Res 25:2075–2083PubMedGoogle Scholar
  13. 13.
    Chang AJ, Song DH, Wolfe MM (2006) Attenuation of peroxisome proliferator-activated receptor gamma (PPARgamma) mediates gastrin-stimulated colorectal cancer cell proliferation. J Biol Chem 281:14700–14710PubMedCrossRefGoogle Scholar
  14. 14.
    Ishikawa T, Ichikawa Y, Mitsuhashi M, Momiyama N, Chishima T, Tanaka K et al (1996) Matrilysin is associated with progression of colorectal tumor. Cancer Lett 107:5–10PubMedCrossRefGoogle Scholar
  15. 15.
    Hipfner DR, Cohen SM (2004) Connecting proliferation and apoptosis in development and disease. Nat Rev Mol Cell Biol 5:805–815PubMedCrossRefGoogle Scholar
  16. 16.
    Fu M, Wang C, Li Z, Sakamaki T, Pestell RG (2004) Minireview: cyclin D1: normal and abnormal functions. Endocrinology 145:5439–5447PubMedCrossRefGoogle Scholar
  17. 17.
    Fornaro M, Dell'Arciprete R, Stella M, Bucci C, Nutini M, Capri MG et al (1995) Cloning of the gene encoding Trop-2, a cell-surface glycoprotein expressed by human carcinomas. Int J Cancer 62:610–618PubMedCrossRefGoogle Scholar
  18. 18.
    Umekita Y, Souda M, Yoshida H (2006) Expression of maspin in colorectal cancer. In Vivo 20:797–800PubMedGoogle Scholar
  19. 19.
    Boltze C (2005) Loss of maspin is a helpful prognosticator in colorectal cancer: a tissue microarray analysis. Pathol Res Pract 200:783–790PubMedCrossRefGoogle Scholar
  20. 20.
    Massague J, Blain SW, Lo RS (2000) TGFb signaling in growth control, cancer, and heritable disorders. Cell 103:295–309PubMedCrossRefGoogle Scholar
  21. 21.
    Akhurst RJ (2004) TGF beta signaling in health and disease. Nat Genet 36:790–792PubMedCrossRefGoogle Scholar
  22. 22.
    Campbell-Thompson M, Lynch IJ, Bhardwaj B (2001) Expression of estrogen receptor (ER) subtypes and ERbeta isoforms in colon cancer. Cancer Res 61:632–640PubMedGoogle Scholar
  23. 23.
    Konstantinopoulos PA, Kominea A, Vandoros G, Sykiotis GP, Andricopoulos P, Varakis I et al (2003) Oestrogen receptor β (ERbeta) is abundantly expressed in normal colonic mucosa, but declines in colon denocarcinoma paralleling the tumour’s dedifferentiation. Eur J Cancer 39:1251–1258PubMedCrossRefGoogle Scholar
  24. 24.
    Mills A (2005) P53: links to the past, bridge to the future. Genes Dev 19:2091–2099PubMedCrossRefGoogle Scholar
  25. 25.
    Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310PubMedCrossRefGoogle Scholar
  26. 26.
    Thompson N, Lyons J (2005) Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery. Curr Opin Pharmacol 5:350–356PubMedCrossRefGoogle Scholar
  27. 27.
    Greene FL, Page DL, Fleming ID et al (2002) AJCC: cancer staging handbook: from the AJCC cancer staging manual, 6th edn. Springer, New YorkGoogle Scholar
  28. 28.
    Sobin LH, Wittekind C (eds) (2002) UICC: TNM classification of malignant tumours. Wiley, LondonGoogle Scholar
  29. 29.
    Schraml P, Kononen J, Bubendorf L, Moch H, Bissig H, Nocito A et al (1999) Tissue microarrays for gene amplification surveys in many different tumor types. Clin Cancer Res 5:1966–1975PubMedGoogle Scholar
  30. 30.
    Mucci NR, Akdas G, Manely S, Rubin MA (2000) Neuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression. Hum Pathol 31:406–414PubMedCrossRefGoogle Scholar
  31. 31.
    Richter J, Wagner U, Kononen J, Fijan A, Bruderer J, Schmid U et al (2000) High-throughput tissue microarray analysis of cyclin E gene amplification and overexpression in urinary bladder cancer. Am J Pathol 157:787–794PubMedGoogle Scholar
  32. 32.
    Benson AB 3rd, Schrag D, Somerfield MR, Cohen AM, Figueredo AT, Flynn PJ et al (2004) American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J Clin Oncol 22:3408–3419PubMedCrossRefGoogle Scholar
  33. 33.
    Johnson PM, Porter GA, Ricciardi R, Baxter NN (2006) Increasing negative lymph node count is independently associated with improved long-term survival in stage IIIB and IIIC colon cancer. J Clin Oncol 24:3570–3575PubMedCrossRefGoogle Scholar
  34. 34.
    Nakashima K, Shimada H, Ochiai T, Kuboshima M, Kuroiwa N, Okazumi S et al (2004) Serological identification of TROP2 by recombinant cDNA expression cloning using sera of patients with esophageal squamous cell carcinoma. Int J Cancer 112:1029–1035PubMedCrossRefGoogle Scholar
  35. 35.
    Kanai Y, Ushijima S, Saito Y, Nakanishi Y, Sakamoto M, Hirohashi S (2001) MRNA expression of genes altered by 5-azacytidine treatment in cancer cell lines is associated with clinicopathological parameters of human cancers. J Cancer Res Clin Oncol 127:697–706PubMedGoogle Scholar
  36. 36.
    Alberti S, Miotti S, Stella M, Klein CE, Fornaro M, Menard S et al (1992) Biochemical characterization of Trop-2, a cell surface molecule expressed by human carcinomas: formal proof that the monoclonal antibodies T16 and MOv-16 recognize Trop-2. Hybridoma 11:539–545PubMedCrossRefGoogle Scholar
  37. 37.
    Miotti S, Canevari S, Menard S, Mezzanzanica D, Porro G, Pupa SM et al (1987) Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal antibodies with tumor-restricted specificity. Int J Cancer 39:297–303PubMedCrossRefGoogle Scholar
  38. 38.
    Fradet Y, Cordon-Cardo C, Thomson T, Daly ME, Whitmore WF Jr, Lloyd KO et al (1984) Cell surface antigens of human bladder cancer defined by mouse monoclonal antibodies. Proc Natl Acad Sci U S A 81:224–228PubMedCrossRefGoogle Scholar
  39. 39.
    Lipinski M, Parks DR, Rouse RV, Herzenberg LA (1981) Human trophoblast cell-surface antigens defined by monoclonal antibodies. Proc Natl Acad Sci U S A 78:5147–5150PubMedCrossRefGoogle Scholar
  40. 40.
    White PS, Forus A, Matise TC, Schutte BC, Spieker N, Stanier P et al (1999) Report of the fifth international workshop on human chromosome 1 mapping 1999. Cytogenet Cell Genet 87:143–171PubMedCrossRefGoogle Scholar
  41. 41.
    El Sewedy T, Fornaro M, Alberti S (1998) Cloning of the murine TROP2 gene: conservation of a PIP2-binding sequence in the cytoplasmic domain of TROP-2. Int J Cancer 75:324–330PubMedCrossRefGoogle Scholar
  42. 42.
    Suzuki A, Hayashida M, Ito T, Kawasaki H, Nakano T, Miura M et al (2000) Survivin initiates cell cycle entry by the competitive interaction with Cdk4/p16(INK4a) and Cdk2/cyclin E complex activation. Oncogene 19:3225–3234PubMedCrossRefGoogle Scholar
  43. 43.
    Sarela AI, Macadam RC, Farmery SM, Markham AF, Guillou PJ (2000) Expression of the antiapoptosis gene, survivin, predicts death from recurrent colorectal carcinoma. Gut 46:645–650PubMedCrossRefGoogle Scholar
  44. 44.
    Rodel F, Hoffmann J, Grabenbauer GG, Papadopoulos T, Weiss C, Gunther K et al (2002) High survivin expression is associated with reduced apoptosis in rectal cancer and may predict disease-free survival after preoperative radiochemotherapy and surgical resection. Strahlenther Onkol 178:426–435PubMedCrossRefGoogle Scholar
  45. 45.
    Rodel F, Hoffmann J, Distel L, Herrmann M, Noisternig T, Papadopoulos T et al (2005) Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer. Cancer Res 65:4881–4887PubMedCrossRefGoogle Scholar
  46. 46.
    Ryan BM, Konecny GE, Kahlert S, Wang HJ, Untch M, Meng G et al (2006) Survivin expression in breast cancer predicts clinical outcome and is associated with HER2, VEGF, urokinase plasminogen activator and PAI-1. Ann Oncol 17:597–604PubMedCrossRefGoogle Scholar
  47. 47.
    Kato J, Kuwabara Y, Mitani M, Shinoda N, Sato A, Toyama T et al (2001) Expression of survivin in esophageal cancer: correlation with the prognosis and response to chemotherapy. Int J Cancer 95:92–95PubMedCrossRefGoogle Scholar
  48. 48.
    Takai N, Miyazaki T, Nishida M, Nasu K, Miyakawa I (2002) Survivin expression correlates with clinical stage, histological grade, invasive behavior and survival rate in endometrial carcinoma. Cancer Lett 184:105–116PubMedCrossRefGoogle Scholar
  49. 49.
    Altieri DC (2003) Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3:46–54PubMedCrossRefGoogle Scholar
  50. 50.
    Li F (2003) Survivin study: what is the next wave? J Cell Physiol 197:8–29PubMedCrossRefGoogle Scholar
  51. 51.
    Yang D, Welm A, Bishop JM (2004) Cell survival in the absence of survivin. Proc Natl Acad Sci U S A 101:15100–15105PubMedCrossRefGoogle Scholar
  52. 52.
    Okada H, Mak TW (2004) Pathways of apoptotic and nonapoptotic death in tumour cells. Nat. Rev. Cancer 4:592–603PubMedCrossRefGoogle Scholar
  53. 53.
    Kawasaki H, Toyoda M, Shinohara H, Okuda J, Watanabe I, Yamamoto T et al (2001) Expression of survivin correlates with apoptosis, proliferation and angiogenesis during human colorectal carcinogenesis. Cancer 91:2026–2032PubMedCrossRefGoogle Scholar
  54. 54.
    Blanc-Brude OP, Mesri M, Wall NR, Plescia J, Dohi T, Altieri DC (2003) Therapeutic targeting of the survivin pathway in cancer: initiation of mitochondrial apoptosis and suppression of tumor-associated angiogenesis. Cancer Res 9:2683–2692Google Scholar
  55. 55.
    Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921PubMedCrossRefGoogle Scholar
  56. 56.
    Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516PubMedCrossRefGoogle Scholar
  57. 57.
    Vihinen P, Kahari VM (2002) Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J Cancer 99:157–166PubMedCrossRefGoogle Scholar
  58. 58.
    Gu ZD, Li JY, Li M, Gu J, Shi XT, Ke Y et al (2005) Matrix metalloproteinases expression correlates with survival in patients with esophageal squamous cell carcinoma. Am J Gastroenterol 100:1835–1843PubMedCrossRefGoogle Scholar
  59. 59.
    Yamamoto H, Itoh F, Adachi Y, Fukushima H, Itoh H, Sasaki S et al (1999) Messenger RNA expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human hepatocellular carcinoma. Jpn J Clin Oncol 29:58–62PubMedCrossRefGoogle Scholar
  60. 60.
    Yamashita K, Azumano I, Mai M, Okada Y (1998) Expression and tissue localization of matrix metalloproteinase 7 (matrilysin) in human gastric carcinomas. Implications for vessel invasion and metastasis. Int J Cancer 79:187–194PubMedCrossRefGoogle Scholar
  61. 61.
    Leeman MF, Curran S, Murray GI (2003) New insights into the roles of matrix metalloproteinases in colorectal cancer development and progression. J Pathol 201:528–534PubMedCrossRefGoogle Scholar
  62. 62.
    Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P et al (1999) The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18:2883–2891PubMedCrossRefGoogle Scholar
  63. 63.
    Zeng ZS, Shu WP, Cohen AM, Guillem JG (2002) Matrix metalloproteinase-7 expression in colorectal cancer liver metastases: evidence for involvement of MMP-7 activation in human cancer metastases. Clin Cancer Res 8:144–148PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Y. J. Fang
    • 1
  • Z. H. Lu
    • 1
  • G. Q. Wang
    • 2
  • Z. Z. Pan
    • 1
  • Z. W. Zhou
    • 2
  • J. P. Yun
    • 3
  • M. F. Zhang
    • 3
  • D. S. Wan
    • 1
    Email author
  1. 1.Department of Colorectal Surgery, State Key Laboratory of Oncology in Southern China, Cancer CenterSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Gastric and Pancreatic Surgery, State Key Laboratory of Oncology in Southern China, Cancer CenterSun Yat-sen UniversityGuangzhouChina
  3. 3.Department of Pathology, State Key Laboratory of Oncology in Southern China, Cancer CenterSun Yat-sen UniversityGuangzhouChina

Personalised recommendations