Polymorphisms of the macrophage inflammatory protein 1 alpha and ApoE genes are associated with ulcerative colitis

  • Keshen Li
  • Binyou Wang
  • Hong Sui
  • Shengyuan Liu
  • Songpo Yao
  • Liang Guo
  • Dongwei Mao
Original Article


Background and aims

An increased production of macrophage inflammatory proteins 1 alpha (MIP-1α) has been reported to be associated with ulcerative colitis (UC). We investigated whether a polymorphism site in MIP-1α was associated with UC in a Chinese population. Additionally, considering the abnormal lipoprotein metabolism in subjects with UC, we also sought to determine whether genetic variation in the apolipoprotein E (ApoE) gene may play a role in the development of UC.

Materials and methods

We examined the MIP-1α −906 (TA)4/(TA)6 polymorphism and the ApoE polymorphism in a cohort of 162 unrelated UC patients and 220 healthy controls by using restriction fragment length polymorphism assay.


A significantly increased frequency of the MIP-1α −906 (TA)6/(TA)6 genotype (P = 0.0031, odds ratio [OR] = 1.851, 95% confidence interval [CI] 1.228–2.791), as well as of the ApoE ε4+ genotype (P < 0.001, OR = 2.869, 95% CI 1.768–4.657), in patients with UC was proven. Moreover, the carriage of both MIP-1α −906 (TA)6/(TA)6 genotype and ApoE ε4+ genotype confers greater risk for the development of UC (P < 0.001, OR = 5.432, 95% CI 2.761–10.689).


These findings suggest that variation in the MIP-1α and ApoE genes and their interaction may increase susceptibility to UC. Identifying these novel susceptibility genes, as well as their interactions, will help our understanding of the disease mechanisms of UC and may identify targets for developing novel treatment measures.


Ulcerative colitis Macrophage inflammatory protein l alpha gene Apolipoprotein E Promoter polymorphism Association study Risk factor 


  1. 1.
    Fiocchi C (1998) Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 115:182–205PubMedCrossRefGoogle Scholar
  2. 2.
    Hugot JP, Zouali H, Lesage S, Thomas G (1999) Etiology of the inflammatory bowel diseases. Int J Colorectal Dis 14:2–9PubMedCrossRefGoogle Scholar
  3. 3.
    MacDermott RP (1999) Chemokines in inflammatory bowel diseases. J Clin Immunol 5:266–272CrossRefGoogle Scholar
  4. 4.
    Zhong W, Kolls JK, Chen H, McAllister F, Oliver PD, Zhang Z (2008) Chemokines orchestrate leukocyte trafficking in inflammatory bowel disease. Front Biosci 13:1654–1664PubMedCrossRefGoogle Scholar
  5. 5.
    Papadakis KA, Targan SR (2000) The role of chemokines and chemokine receptors in mucosal inflammation. Inflamm Bowel Dis 6:303–313PubMedCrossRefGoogle Scholar
  6. 6.
    Banks C, Bateman A, Payne R, Johnson P, Sheron N (2003) Chemokine expression in IBD. Mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn’s disease. J Pathol 199:28–35PubMedCrossRefGoogle Scholar
  7. 7.
    Davatelis G, Tekamp-Olson P, Wolpe SD, Hermsen K, Luedke C, Gallegos C, Coit D, Merryweather J, Cerami A (1988) Cloning and characterization of a cDNA for murine macrophage inflammatory protein (MIP), a novel monokine with inflammatory and chemokine properties. J Exp Med 167:1939–1944PubMedCrossRefGoogle Scholar
  8. 8.
    Schall TJ, Bacon K, Camp RD, Kaspari JW, Goeddel DV (1993) Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. J Exp Med 177:1821–1826PubMedCrossRefGoogle Scholar
  9. 9.
    Menten P, Wuyts A, Van-Damme DJ (2002) Macrophage inflammatory protein-1. Cytokine Growth Factor Rev 13:455–481PubMedCrossRefGoogle Scholar
  10. 10.
    Grimm MC, Doe WF (1996) Chemokines in IBD mucosa: expression of RANTES, MIP-1α, MIP-1β and interferon inducible protein 10 by macrophages, lymphocytes, endothelial cells and granulomas. Inflammatory Bowel Dis 2:88–96CrossRefGoogle Scholar
  11. 11.
    Vainer B, Nielsen OH, Horn T (1998) Expression of E-selectin, sialyl Lewis X, and macrophage inflammatory protein-1alpha by colonic epithelial cells in ulcerative colitis. Dig Dis Sci 43:596–608PubMedCrossRefGoogle Scholar
  12. 12.
    Ajuebor MN, Kunkel SL, Hogaboam CM (2004) The role of CCL3/macrophage inflammatory protein-1alpha in experimental colitis. Eur J Pharmacol 497:343–349PubMedCrossRefGoogle Scholar
  13. 13.
    Al-Sharif FM, Makki RF, Ollier WE, Hajeer AH (1999) A new microsatellite marker within the promoter region of the MIP-1A gene. Immunogenetics 49:740–741PubMedCrossRefGoogle Scholar
  14. 14.
    Hagberg JM, Wilund KR, Ferrell RE (2000) APOE gene and gene-environment effects on plasma lipoprotein-lipid levels. Physiol Genomics 4:101–108PubMedGoogle Scholar
  15. 15.
    Ripollés Piquer B, Nazih H, Bourreille A, Segain JP, Huvelin JM, Galmiche JP, Bard JM (2006) Altered lipid, apolipoprotein, and lipoprotein profiles in inflammatory bowel disease: consequences on the cholesterol efflux capacity of serum using Fu5AH cell system. Metabolism 55:980–988PubMedCrossRefGoogle Scholar
  16. 16.
    Jofre-Monseny L, Loboda A, Wagner AE, Huebbe P, Boesch-Saadatmandi C, Jozkowicz A, Minihane AM, Dulak J, Rimbach G (2007) Effects of apoE genotype on macrophage inflammation and heme oxygenase-1 expression. Biochem Biophys Res Comm 357:319–324PubMedCrossRefGoogle Scholar
  17. 17.
    Lennard-Jones JE (1989) Classification of inflammatory bowel disease. Scand J Gastroenterol Suppl 170:2–6PubMedCrossRefGoogle Scholar
  18. 18.
    Wang B, Jin F, Xie Y, Tang Y, Kan R, Zheng C, Yang Z, Wang L (2006) Association analysis of NAD(P)H:quinone oxidoreductase gene 609 C/T polymorphism with Alzheimer’s disease. Neurosci Lett 409:179–181PubMedCrossRefGoogle Scholar
  19. 19.
    Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392:565–568PubMedCrossRefGoogle Scholar
  20. 20.
    Luster AD (1998) Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445PubMedCrossRefGoogle Scholar
  21. 21.
    MacDermott RP, Sanderson IR, Reinecker HC (1998) The central role of chemokines (chemotactic cytokines) in the immunopathogenesis of ulcerative colitis and Crohn’s disease. Inflam Bowel Dis 4:54–67Google Scholar
  22. 22.
    Pender SL, Chance V, Whiting CV, Buckley M, Edwards M, Pettipher R, MacDonald TT (2005) Systemic administration of the chemokine macrophage inflammatory protein 1alpha exacerbates inflammatory bowel disease in a mouse model. Gut 54:1114–1120PubMedCrossRefGoogle Scholar
  23. 23.
    Choi SJ, Oba T, Callander NS, Jelinek DF, Roodman GD (2003) AML-1A and AML-1B regulation of MIP-1 alpha expression in multiple myeloma. Blood 101:3778–3783PubMedCrossRefGoogle Scholar
  24. 24.
    Broedl UC, Schachinger V, Lingenhel A, Lehrke M, Stark R, Seibold F, Göke B, Kronenberg F, Parhofer KG, Konrad-Zerna A (2007) Apolipoprotein A-IV is an independent predictor of disease activity in patients with inflammatory bowel disease. Inflamm Bowel Dis 13:391–397PubMedCrossRefGoogle Scholar
  25. 25.
    Shiraki M, Shiraki Y, Aoki C, Hosoi T, Inoue S, Kaneki M, Ouchi Y (1997) Association of bone mineral density with apolipoprotein E phenotype. J Bone Miner Res 12:1438–1445PubMedCrossRefGoogle Scholar
  26. 26.
    Wong SY, Lau EM, Li M, Chung T, Sham A, Woo J (2005) The prevalence of Apo E4 genotype and its relationship to bone mineral density in Hong Kong Chinese. J Bone Miner Metab 23:261–265PubMedCrossRefGoogle Scholar
  27. 27.
    Ulivieri FM, Lisciandrano D, Ranzi T, Taioli E, Cermesoni L, Piodi LP, Nava MC, Vezzoli M, Bianchi PA (2000) Bone mineral density and body composition in patients with ulcerative colitis. Am J Gastroenterol 95:1491–1494PubMedCrossRefGoogle Scholar
  28. 28.
    Jofre-Monseny L, Minihane AM, Rimbach G (2008) Impact of apoE genotype on oxidative stress, inflammation and disease risk. Mol Nutr Food Res 52:131–145PubMedCrossRefGoogle Scholar
  29. 29.
    Vitek MP, Brown CM, Colton CA (2008) APOE genotype-specific differences in the innate immune response. Neurobiol Aging Dec 20; [Epub ahead of print]Google Scholar
  30. 30.
    Lynch JR, Tang W, Wang H, Vitek MP, Bennett ER, Sullivan PM, Warner DS, Laskowitz DT (2003) APOE genotype and an ApoE mimetic peptide modify the systemic and central nervous system inflammatory response. J Biol Chem 278:48529–48533PubMedCrossRefGoogle Scholar
  31. 31.
    Ophir G, Amariglio N, Jacob-Hirsch J, Elkon R, Rechavi G, Michaelson DM (2005) Apolipoprotein E4 enhances brain inflammation by modulation of the NF-kappaB signaling cascade. Neurobiol Dis 20:709–718PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Keshen Li
    • 1
  • Binyou Wang
    • 2
  • Hong Sui
    • 2
  • Shengyuan Liu
    • 2
  • Songpo Yao
    • 2
  • Liang Guo
    • 1
  • Dongwei Mao
    • 3
  1. 1.Department of Biomedical EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.Department of Molecular EpidemiologyHarbin Medical UniversityHarbinChina
  3. 3.Department of Gastroenterology, The fourth affiliated hospitalHarbin Medical UniversityHarbinChina

Personalised recommendations