International Journal of Colorectal Disease

, Volume 23, Issue 11, pp 1033–1039 | Cite as

Predictive and prognostic value of microsatellite instability in patients with advanced colorectal cancer treated with a fluoropyrimidine and oxaliplatin containing first-line chemotherapy. A report of the AIO Colorectal Study Group

  • C. I. Müller
  • K. Schulmann
  • A. Reinacher-Schick
  • N. Andre
  • D. Arnold
  • A. Tannapfel
  • H. Arkenau
  • S. A. Hahn
  • S. H.-J. Schmoll
  • R. Porschen
  • W. Schmiegel
  • U. Graeven
Original Article

Abstract

Background and aims

Microsatellite instability (MSI) is a potential indicator of prognosis in patients with colorectal cancer (CRC). To date, there are a limited number of studies which investigated its role in advanced CRC. Our study investigated the value of high degree of MSI (MSI-H) in patients treated with 5-FU/oxaliplatin-based chemotherapy which has been done by only one further study recently.

Patients and methods

In this study, we investigated tumour tissues from 108 patients with metastatic CRC who were treated in a prospective, randomised trial comparing two oxaliplatin and 5-FU-based therapy regimens (FUFOX vs. CAPOX) involving a total of 474 patients. We determined the incidence and prognostic value of a high degree of microsatellite instability. The specimens were analysed by PCR corresponding to the National Institute of Health reference panel. In addition, immunostaining of the mismatch repair proteins MLH1, MSH2 and MSH6 was performed.

Results and findings

The incidence of MSI-H was 4%. MSI-H was correlated with a lower rate of disease control compared to non-MSI-H patients (p = 0.02). However, there was no correlation between MSI-H and progression-free survival or overall survival.

Interpretation and conclusion

MSI-H incidence in metastatic CRC was low. Our data suggest that MSI-H may be correlated with a poorer response to a 5-FU/oxaliplatin treatment. This finding needs confirmation in a larger cohort.

Keywords

Colorectal cancer Microsatellite instability Chemotherapy Prognosis 

Notes

Acknowledgements and grant support

This study was supported in part by a grant of the German Cancer Aid (Deutsche Krebshilfe, 70–3033-Schm 4) to WS and an intramural research grant of the Medical Faculty of the Ruhr-University Bochum to KS. We thank Sabine Geiger, Hedi Safa, Sandra Grasediek and Britta Redeker for technical assistance and the AIO for providing clinical data. We thank the participating pathologists for providing tissue blocks. The authors state to have no financial disclosures.

References

  1. 1.
    Ferlay J, Bray F, Pisani P et al (2004) GLOBOCAN 2002: cancer incidence, mortality and prevalence worldwide. IARC CancerBase no. 5, version 2.0. IARC, Lyon, FranceGoogle Scholar
  2. 2.
    Kelly HGoldberg RM (2005) Systemic therapy for metastatic colorectal cancer: current options, current evidence. J Clin Oncol 23:4553–4560CrossRefGoogle Scholar
  3. 3.
    Meyerhardt JAMayer RJ (2005) Systemic therapy for colorectal cancer. N Engl J Med 352:476–487CrossRefGoogle Scholar
  4. 4.
    Jiricny JNyström-Lahti M (2000) Mismatch repair defects in cancer. Curr Opin Genet Dev 10:157–161CrossRefGoogle Scholar
  5. 5.
    Grady WM (2004) Genomic instability and colon cancer. Cancer Metastasis Rev 23:11–27PubMedCrossRefGoogle Scholar
  6. 6.
    Lynch HT, Boland CR, Rodriguez-Bigas MA et al (2007) Who should be sent for genetic testing in hereditary colorectal cancer syndromes? J Clin Oncol 25:3534–3542PubMedCrossRefGoogle Scholar
  7. 7.
    Thibodeau SN, French AJ, Cunningham JM et al (1998) Microsatellite instability in colorectal cancer: different mutator phenotypes and the principial involvement of hMLH1. Cancer Res 58:1713–1718PubMedGoogle Scholar
  8. 8.
    Cunningham JM, Christensen ER, Tester DJ et al (1998) Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 58:3455–3460PubMedGoogle Scholar
  9. 9.
    Kane MF, Loda M, Gaida GM et al (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57:808–811PubMedGoogle Scholar
  10. 10.
    Veigl ML, Kasturi L, Olechnowicz J et al (1998) Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci U S A 95:8698–8702PubMedCrossRefGoogle Scholar
  11. 11.
    Herman JG, Umar A, Polyak K et al (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A 95:6870–6875PubMedCrossRefGoogle Scholar
  12. 12.
    Popat S, Hubner R, Houlston RS (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 23:609–618PubMedCrossRefGoogle Scholar
  13. 13.
    Hemminki A, Mecklin JP, Jarvinen H et al (2000) Microsatellite instability is a favorable prognostic indicator in patients with colorectal cancer receiving chemotherapy. Gastroenterology 119:921–928PubMedCrossRefGoogle Scholar
  14. 14.
    Elsaleh H, Joseph D, Grieu F et al (2000) Association of tumour site and sex with survival benefit from adjuvant chemotherapy in colorectal cancer. Lancet 355:1745–1750PubMedCrossRefGoogle Scholar
  15. 15.
    Ribic CM, Sargent DJ, Moore MJ et al (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349:247–257PubMedCrossRefGoogle Scholar
  16. 16.
    Carethers JM, Smith EJ, Behling CA et al (2004) Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology 126:394–401PubMedCrossRefGoogle Scholar
  17. 17.
    Jover R, Zapater P, Castells A et al (2006) Mismatch repair status in the prediction of benefit from adjuvant fluorouracil chemotherapy in colorectal cancer. Gut 55:848–855PubMedCrossRefGoogle Scholar
  18. 18.
    Benatti P, Gafa R, Barana D et al (2005) Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res 11:8332–8340PubMedCrossRefGoogle Scholar
  19. 19.
    Carethers JM, Chauhan DP, Fink D et al (1999) Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology 117:123–131PubMedCrossRefGoogle Scholar
  20. 20.
    Tajima A, Hess MT, Cabrera BL et al (2004) The mismatch repair complex hMutS alpha recognizes 5-fluorouracil-modified DNA: implications for chemosensitivity and resistance. Gastroenterology 127:1678–1684PubMedCrossRefGoogle Scholar
  21. 21.
    Arnold CN, Goel A, Boland CR (2003) Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer 106:66–73PubMedCrossRefGoogle Scholar
  22. 22.
    Brueckl WM, Moesch C, Brabletz T et al (2003) Relationship between microsatellite instability, response and survival in palliative patients with colorectal cancer undergoing first-line chemotherapy. Anticancer Res 23:1773–1777PubMedGoogle Scholar
  23. 23.
    Liang JT, Huang KC, Lai HS et al (2002) High-frequency microsatellite instability predicts better chemosensitivity to high-dose 5-fluorouracil plus leucovorin chemotherapy for stage IV sporadic colorectal cancer after palliative bowel resection. Int J Cancer 101:519–525PubMedCrossRefGoogle Scholar
  24. 24.
    Chen WS, Chen JY, Liu JM et al (1997) Microsatellite instability in sporadic-colon-cancer patients with and without liver metastases. Int J Cancer 74:470–474PubMedCrossRefGoogle Scholar
  25. 25.
    Kochhar R, Halling KC, McDonnell S et al (1997) Allelic imbalance and microsatellite instability in resected Duke's D colorectal cancer. Diagn Mol Pathol 6:78–84PubMedCrossRefGoogle Scholar
  26. 26.
    des Guetz G, Mariani P, Cucherousset J et al (2007) Microsatellite instability and sensitivity to FOLFOX treatment in metastatic colorectal cancer. Anticancer Res 27:2715–2719PubMedGoogle Scholar
  27. 27.
    Fink D, Nebel S, Aebi S et al (1996) The role of DNA mismatch repair in platinum drug resistance. Cancer Res 56:4881–4886PubMedGoogle Scholar
  28. 28.
    Fink D, Zheng H, Nebel S et al (1997) In vitro and in vivo resistance to cisplatin in cells that have lost DNA mismatch repair. Cancer Res 57:1841–1845PubMedGoogle Scholar
  29. 29.
    Porschen R, Arkenau HT, Kubicka S et al (2007) Phase III study of capecitabine plus oxaliplatin compared with fluorouracil and leucovorin plus oxaliplatin in metastatic colorectal cancer: a final report of the AIO Colorectal Study Group. J Clin Oncol 25:4217–4223PubMedCrossRefGoogle Scholar
  30. 30.
    Diaz-Rubio E, Tabernero J, Gomez-Espana A et al (2007) Phase III study of capecitabine plus oxaliplatin compared with continuous-infusion fluorouracil plus oxaliplatin as first-line therapy in metastatic colorectal cancer: final report of the Spanish Cooperative Group for the Treatment of Digestive Tumors Trial. J Clin Oncol 25:4224–4230PubMedCrossRefGoogle Scholar
  31. 31.
    Cassidy J, Clarke S, Diaz-Rubio E et al (2007 ASCO Annual Meeting Proceedings) XELOX compared to FOLFOX4: Survival and response from XELOX-I/NO16966, a randomized phase III trial of first-line treatment for metastatic colorectal cancer (MCRC). J Clin Oncol 25(18s) (suppl; abstr 4030)Google Scholar
  32. 32.
    Kunstmann E, Vieland J, Brasch FE et al (2004) HNPCC: six new pathogenic mutations. BMC Med Genet 5:16PubMedCrossRefGoogle Scholar
  33. 33.
    Dietmaier W, Wallinger S, Bocker T et al (1997) Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 57:4749–4756PubMedGoogle Scholar
  34. 34.
    Lindor NM, Burgart LJ, Leontovich O et al (2002) Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J Clin Oncol 20:1043–1048PubMedCrossRefGoogle Scholar
  35. 35.
    Ruszkiewicz A, Bennett G, Moore J et al (2002) Correlation of mismatch repair genes immunohistochemistry and microsatellite instability status in HNPCC-associated tumours. Pathology 34:541–547PubMedCrossRefGoogle Scholar
  36. 36.
    Boland C, Thibodeau S, Hamilton S et al (1998) A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257PubMedGoogle Scholar
  37. 37.
    Zhou XP, Hoang JM, Li YJ et al (1998) Determination of the replication error phenotype in human tumors without the requirement for matching normal DNA by analysis of mononucleotide repeat microsatellites. Genes Chromosomes Cancer 21:101–107PubMedCrossRefGoogle Scholar
  38. 38.
    Kaplan EMeier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 158:23–39Google Scholar
  39. 39.
    Gonzalez-Garcia I, Moreno V, Navarro M et al (2000) Standardized approach for microsatellite instability detection in colorectal carcinomas. J Natl Cancer Inst 92:544–549PubMedCrossRefGoogle Scholar
  40. 40.
    Lothe RA, Peltomaki P, Meling GI et al (1993) Genomic instability in colorectal cancer: relationship to clinicopathological variables and family history. Cancer Res 53:5849–5852PubMedGoogle Scholar
  41. 41.
    Jernvall P, Makinen MJ, Karttunen TJ et al (1999) Microsatellite instability: impact on cancer progression in proximal and distal colorectal cancers. Eur J Cancer 35:197–201PubMedCrossRefGoogle Scholar
  42. 42.
    Evertson S, Wallin A, Arbman G et al (2003) Microsatellite instability and MBD4 mutation in unselected colorectal cancer. Anticancer Res 23:3569–3574PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • C. I. Müller
    • 1
  • K. Schulmann
    • 2
  • A. Reinacher-Schick
    • 2
  • N. Andre
    • 2
  • D. Arnold
    • 3
  • A. Tannapfel
    • 4
  • H. Arkenau
    • 5
  • S. A. Hahn
    • 6
  • S. H.-J. Schmoll
    • 3
  • R. Porschen
    • 7
  • W. Schmiegel
    • 2
    • 8
  • U. Graeven
    • 9
  1. 1.Institute of PhysiologyUniversity Hospital EssenEssenGermany
  2. 2.Medical DepartmentRuhr-University of BochumBochumGermany
  3. 3.Medical Department IV, University ClinicMartin Luther UniversityHalleGermany
  4. 4.Institute of Pathology, University Clinic BergmannsheilRuhr-University of BochumBochumGermany
  5. 5.Drug Development UnitRoyal Marsden Hospital and Institute of Cancer ResearchSuttonUK
  6. 6.Center for Clinical Research (ZKF, Molecular GI-Oncology (MGO))Ruhr-University of BochumBochumGermany
  7. 7.Medical Department Klinikum Bremen-OstBremenGermany
  8. 8.Division of Gastroenterology and Hepatology, University Hospital BergmannsheilRuhr-University of BochumBochumGermany
  9. 9.Kliniken Maria Hilf GmbH Klinik für Hämatologie, Onkologie, GastroenterologieMönchengladbachGermany

Personalised recommendations