International Journal of Colorectal Disease

, Volume 19, Issue 1, pp 23–42 | Cite as

Molecular lesions in colorectal cancer: impact on prognosis?

Original data and review of the literature
  • B. Klump
  • O. Nehls
  • T. Okech
  • C.-J. Hsieh
  • V. Gaco
  • F. S. Gittinger
  • M. Sarbia
  • F. Borchard
  • A. Greschniok
  • H. H. Gruenagel
  • R. Porschen
  • M. Gregor
Original Article



In the Dukes' B and C stages of colorectal carcinoma there are considerable variations in the observed courses of the disease. Since post-operative chemotherapy in patients with Dukes' C (node-positive) colon carcinoma has been demonstrated to be effective in improving overall-survival, a more exact prognosis assessment gains additional significance and therapeutic relevance.


One also hopes to derive improved prognostic factors from the clarification of the molecular pathogenesis. Because of its frequency and the accessibility and recognizability of its developmental stages colorectal carcinoma is among the best investigated of all solid tumors. Despite a multitude of suggested molecular candidate markers none of these changes has yet been able enter the everyday life of the clinic. However, it is to be expected that some of the molecular alterations presently discussed will gain importance before long in the clinical treatment of patients with colorectal carcinoma.


Considering also our own findings, this review presents the latest developments in the scientific discussion of the tumor suppressor/oncogenes p53, k-ras, and DCC, biochemical determinants of the 5-fluorouracil metabolism, and defects of the DNA repair system.


Colorectal carcinoma Prognosis Molecular biology p53 DCC 


  1. 1.
    Becker N, Wahrendorf J (1998) Krebsatlas der Bundesrepublik Deutschland 1981–1990. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Parker SL, Tong T, Bolden S, Wingo PA (1997) Cancer statistics. CA Cancer J Clin 47:5–27PubMedGoogle Scholar
  3. 3.
    Dukes CE, Bussey HJR (1958) The spread of rectal cancer and its effect on prognosis. Br J Cancer 12:309–320Google Scholar
  4. 4.
    Fielding LP (1986) Clinical-pathologic staging of large bowel cancer. Lancet 45:8–30Google Scholar
  5. 5.
    Moertel CG, Fleming TR, Macdonald JS, Haller DG, Laurie JA, Goodman PJ, et al (1990) Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med 322:352–358PubMedGoogle Scholar
  6. 6.
    Moertel CG, Fleming TR, Macdonald JS, Haller DG, Laurie JA, Tangen CM, et al (1995) Fluorouracil plus levamisole as effective adjuvant therapy after resection for stage III colon carcinoma: a final report. Ann Intern Med 122:321–326PubMedGoogle Scholar
  7. 7.
    Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767PubMedGoogle Scholar
  8. 8.
    Fearon ER (1995) Molecular genetics of colorectal cancer. Ann N Y Acad Sci 768:101–110PubMedGoogle Scholar
  9. 9.
    Jen J, Kim H, Piantadosi S, Liu ZF, Liu ZF, Levitt RC, Sistonen P, et al (1994) Allelic loss of chromosome 18q and prognosis in colorectal cancer. N Engl J Med 331:213–221PubMedGoogle Scholar
  10. 10.
    Levine AJ, Momand J, Finlay CA (1991) The p53 tumor suppressor gene. Nature 351:453–456PubMedGoogle Scholar
  11. 11.
    Harris CC, Hollstein M (1993) Clinical implications of the p53 tumor-suppressor gene. N Engl J Med 329:1318–1327CrossRefPubMedGoogle Scholar
  12. 12.
    Chang F, Syrjanen S, Syrjanen K (1995) Implications of the p53-tumor-suppressor gene in clinical oncology. J Clin Oncol 4:1009–1022Google Scholar
  13. 13.
    Pereira H, Silva S, Juliao R, Garcia P, Perpetua F, et al (1997) Prognostic markers for colorectal cancer: expression of p53 and bcl2. World J Surg 21:210–213CrossRefPubMedGoogle Scholar
  14. 14.
    Smith DR, Ji CY, Goh HS (1996) Prognostic significance of p53 overexpression and mutation in colorectal adenocarcinomas. Br J Cancer 74:216–223Google Scholar
  15. 15.
    Soong R, Grieu F, Robbins P, et al (1997) p53 alterations are associated with improved prognosis in distal colonic carcinomas. Clin Cancer Res 3:1405–1411PubMedGoogle Scholar
  16. 16.
    Elsaleh H, Powell B, McCaul K, et al (2001) P53 alteration and microsatellite instability have predictive value for survival benefit from chemotherapy in stage III colorectal carcinoma. Clin Cancer Res 7:1343–1349PubMedGoogle Scholar
  17. 17.
    Esteller M, González S, Risques RA, et al (2001) k-ras and p16 aberrations confer poor prognosis in human colorectal cancer. J Clin Oncol 19:299–304PubMedGoogle Scholar
  18. 18.
    Yang Y, Forslund A, Remotti, et al (2001) P53 mutations in primary tumors and subsequent liver metastases are related to survival in patients with colorectal carcinoma who undergo liver resection. Cancer 91:727–736CrossRefPubMedGoogle Scholar
  19. 19.
    Gervaz P, Bouzourene H, Cerottini J-P, et al (2001) Dukes B colorectal cancer. Distinct genetic categories and clinical outcome based on proximal or distal tumor location. Dis Colon Rectum 44:364–373PubMedGoogle Scholar
  20. 20.
    Diez M, Medrano M, Muguerza JM, et al (2000) Influence of tumor localization on the prognostic value of p53 protein in colorectal adenocarcinomas. Anticancer Res 20:3907–3912PubMedGoogle Scholar
  21. 21.
    Gallego MG, Acenero MJ, Ortega S, et al (2000) Prognostic influence of p53 nuclear overexpression in colorectal carcinoma. Dis Colon Rectum 43:971–975Google Scholar
  22. 22.
    Bouzourene H, Gervaz P, Cerottini JP, et al (2000) P53 and k-ras as prognostic factors for Dukes' stage B colorectal cancer. Eur J Cancer 36:1008–1015CrossRefPubMedGoogle Scholar
  23. 23.
    Nehls O, Klump B, Holzmann K, et al (1999) Influence of p53 status on prognosis in preoperatively irradiated rectal carcinoma. Cancer 85:2541–2548Google Scholar
  24. 24.
    Kressner U, Inganas M, Byding S, Blikstad I, Pahlman L, Glimelius B, et al (1999) Prognostic value of p53 genetic changes in colorectal cancer. J Clin Oncol 17:593–599Google Scholar
  25. 25.
    Sturm I, Köhne CH, Wolff G, Petrowsky H, Hillebrand T, Hauptmann S, et al (1999) Analysis of the p53/BAX pathway in colorectal cancer: low BAX is a negative prognostic factor in patients with resected liver metastases. J Clin Oncol 17:1364–1374PubMedGoogle Scholar
  26. 26.
    Tollenaar RAEM, van Krieken JHJM, van Slooten HJ, Bruinvels DJ, Nelemans KMJ, van den Broek LJ, et al (1998) Immunohistochemical detection of p53 and BCL-2 in colorectal carcinoma: no evidence for prognostic significance. Br J Cancer 77:1842–1847PubMedGoogle Scholar
  27. 27.
    Ahnen DJ, Feigl P, Quan G, Fenoglio-Preiser C, Lovato LC, Bunn PA, et al (1998) Ki-ras mutation and p53 overexpression predict the clinical behavior of colorectal cancer: a Southwest Oncology Group study. Cancer Res 58:1149–1158PubMedGoogle Scholar
  28. 28.
    Ilyas M, Hao X-P, Wilkinson K, et al (1998) Loss of bcl-2 expression correlates with tumour recurrence in colorectal cancer. Gut 43:383–387PubMedGoogle Scholar
  29. 29.
    Wiggenraad R, Tamminga R, Blok P, et al (1998) The prognostic significance of p53 expression for survival and local control in rectal carcinoma treated with surgery and postoperative radiotherapy. Int J Radiat Oncol Biol Phys 41:29–35PubMedGoogle Scholar
  30. 30.
    Caldes T, Iniesta P, de Juan C, et al (1998) Comparative survival analysis of p53 gene mutations and protein accumulation in colorectal cancer. Oncology 55:249–257CrossRefPubMedGoogle Scholar
  31. 31.
    Starzynska T, Bromley M, Marlicz K, Roberts SA, Ucinski M, Stern PL (1997) Accumulation of p53 in relation to long-term prognosis in colorectal carcinoma. Eur J Gastroenterol Hepat 9:183–186Google Scholar
  32. 32.
    Maeda K, Chung Y-S, Kang S-M, et al (1997) Overexpression of cyclin D1 and p53 associated with disease recurrence in colorectal adenocarcinoma. Int J Cancer 74:310–315CrossRefPubMedGoogle Scholar
  33. 33.
    Poller DN, Baxter KJ, Shepherd NA (1997) P53 and RB1 protein expression: are they prognostically useful in colorectal cancer? Br J Cancer 75:87–93Google Scholar
  34. 34.
    Bhatavdekar JM, Patel DD, Ghosh N, et al (1997) Coexpression of bcl-2, c-myc, and p53 oncoproteins as prognostic discriminants in patients with colorectal carcinoma. Dis Colon Rectum 40:785–790PubMedGoogle Scholar
  35. 35.
    Baretton GB, Diebold J, Christoforis G, et al (1996) Apoptosis and immunohistochemical bcl-2 expression in colorectal adenomas and carcinomas. Cancer 77:255–264CrossRefPubMedGoogle Scholar
  36. 36.
    Flamini G, Curigliano G, Ratto C, et al (1996) Prognostic significance of cytoplasmatic p53 overexpression in colorectal cancer. An immunohistochemical analysis. Eur J Cancer 32A:802–806CrossRefPubMedGoogle Scholar
  37. 37.
    Belluco C, Guillem JG, Kemeny N, Huang Y, Klimstra D, Berger MF, et al (1996) P53 nuclear protein overexpression in colorectal cancer: a dominant predictor of survival in patients with advanced hepatic metastases. J Clin Oncol 14:2696–2701PubMedGoogle Scholar
  38. 38.
    Leahy DT, Salman R, Mulcahy H, et al (1996) Prognostic significance of p53 abnormalities in colorectal carcinoma detected by PCR-SSCP and immunohistochemical analysis. J Pathol 180:364–370CrossRefPubMedGoogle Scholar
  39. 39.
    Mulder JWR, Baas IO, Polak MM, Goodman SN, Offerhaus GJA (1995) Evaluation of p53 protein expression as a marker for long-term prognosis in colorectal carcinoma. Br J Cancer 71:1257–1262Google Scholar
  40. 40.
    Kastrinakis WV, Ramchurren N, Rieger KM, Hess DT, Loda M, Steele G, et al (1995) Increased incidence of p53 mutations is associated with hepatic metastasis in colorectal neoplastic progression. Oncogene 11:647–652PubMedGoogle Scholar
  41. 41.
    Diez M, Enriquez JM, Camunas J, et al (1995) Prediction of recurrence in B-C stages of colorectal cancer by p53 nuclear overexpression in comparison with standard pathological features. Eur J Surg Oncol 21:635–639PubMedGoogle Scholar
  42. 42.
    Grewal H, Guillem JG, Klimstra DS, et al (1995) P53 nuclear overexpression may not be an independent prognostic marker in early colorectal cancer. Dis Colon Rectum 38:1176–1181PubMedGoogle Scholar
  43. 43.
    Auvinen A, Isola J, Visakorpi T, Koivula T, Virtanen S, Hakama M (1994) Overexpression of p53 and long-term survival in colon carcinoma. Br J Cancer 70:293–296PubMedGoogle Scholar
  44. 44.
    Bosari S, Viale G, Bossi P, et al (1994) Cytoplasmatic accumulation of p53 protein: an independent prognostic indicator in colorectal adenocarcinomas. J Natl Cancer Inst 86:681–687PubMedGoogle Scholar
  45. 45.
    Morrin M, Kelly M, Barrett N, Delaney P (1994) Mutations of ki-ras and p53 genes in colorectal cancer and their prognostic significance. Gut 35:1627–1631PubMedGoogle Scholar
  46. 46.
    Nathanson SD, Linden MD, Tender P, Zarbo RJ, Jacobsen G, Nelson LT (1994) Relationship among p53, stage, and prognosis of large bowel cancer. Dis Colon Rectum 37:527–534PubMedGoogle Scholar
  47. 47.
    Zeng ZS, Sarkis AS, Zhang ZF, Klimstra DS, Charytonowicz E, Guillem JG, et al (1994) P53 nuclear overexpression: an independent predictor of survival in lymph node-positive colorectal cancer patients. J Clin Oncol 12:2043–2050PubMedGoogle Scholar
  48. 48.
    Tanaka M, Omura K, Watanabe Y, Oda Y, Nakanishi I (1994) Prognostic factors of colorectal cancer: k-ras mutation, overexpression of the p53 protein, and cell proliferative activity. J Surg Oncol 57:57–64PubMedGoogle Scholar
  49. 49.
    Yamaguchi A, Nakagawara G, Kurosaka Y, Nishimura G, Yonemura Y, Miyazaki I (1993) p53 immunoreaction in endoscopic biopsy specimens of colorectal cancer, and its prognostic significance. Br J Cancer 68:399–402PubMedGoogle Scholar
  50. 50.
    Bell S, Scott N, Cross D, Sagar P, Lewis FA, Blair E, et al (1993) Prognostic value of p53 overexpression and c-ki-ras gene mutations in colorectal cancer. Gastroenterology 104:57–64PubMedGoogle Scholar
  51. 51.
    Scott N, Sagar P, Stewart J, Blair GE, Dixon MF, Quirke P (1991) P53 in colorectal cancer: clinicopathological correlation and prognostic significance. Br J Cancer 63:317–319PubMedGoogle Scholar
  52. 52.
    Remvikos Y, Tominaga O, Hammel P, Laurent-Puig P, Salmon RJ, Dutrillaux B, et al (1992) Increased p53 protein content of colorectal tumours correlates with poor survival. Br J Cancer 66:758–764Google Scholar
  53. 53.
    Rosty C, Chazal M, Etienne M-C, et al (2001) Determination of microsatellite instability, p53 and k-ras mutations in hepatic metastases from patients with colorectal cancer: relationship with response to 5-fluorouracil and survival. Int J Cancer 95:162–167Google Scholar
  54. 54.
    Bleeker WA, Hayes VM, Karrenbeld A, et al (2001) Prognostic significance of k-ras and p53 mutations in the role of adjuvant chemotherapy on survival in patients with Dukes C colon cancer. Dis Colon Rectum 44:358–363PubMedGoogle Scholar
  55. 55.
    Soong R, Powell B, Elsaleh H, et al (2000) Prognostic significance of TP53 gene mutation in 995 cases of colorectal carcinoma: influence of tumour site, stage, adjuvant chemotherapy and type of mutation. Eur J Cancer 36:2053–2060CrossRefPubMedGoogle Scholar
  56. 56.
    Kahlenberg MS, Stoler DL, Rodriguez-Bigas MA, et al (2000) P53 tumor supressor gene mutations predict decreased survival with sporadic colorectal carcinoma. Cancer 88:1814–1819CrossRefPubMedGoogle Scholar
  57. 57.
    Liang JT, Cheng YM, Chang KJ, Chien CT, Hsu HC (1999) Reappraisal of k-ras and p53 gene mutations in the recurrence of Dukes B2 rectal cancer after curative resection. Hepatogastroenterology 46:830–837Google Scholar
  58. 58.
    Tortola S, Marcuello E, Gonzalez I, Reyes G, Arribas R, Aiza G, et al (1999) P53 and k-ras gene mutations correlate with tumor aggressiveness but are not of routine prognostic value in colorectal cancer. J Clin Oncol 17:1375–1381PubMedGoogle Scholar
  59. 59.
    Hardingham JE, Butler WJ, Roder D, Dobrovic A, Dymock RB, Sage RE, et al (1998) Somatic mutations, acetylator status, and prognosis in colorectal cancer. Gut 42:669–672PubMedGoogle Scholar
  60. 60.
    Hamelin R, Laurent-Puig P, Olschwang S, Jego N, Asselain B, Remvikos Y, et al (1994) Association of p53 mutations with short term survival in colorectal cancer. Gastroenterology 106:42–48PubMedGoogle Scholar
  61. 61.
    Baas IO, Mulder JWR, Offerhaus GJA, Vogelstein B, Hamilton SR (1994) An evaluation of six antibodies for immunohistochemistry of mutant p53 gene product in archival colorectal neoplasms. J Pathol 172:5–12PubMedGoogle Scholar
  62. 62.
    Dix B, Robbins P, Carello A, House A, Iacopetta B (1994) Comparison of p53 gene mutation and protein overexpression in colorectal carcinoma. Br J Cancer 70:585–590Google Scholar
  63. 63.
    Wynford-Thomas D (1992) P53 in tumor pathology: can we trust immunocytochemistry? J Pathol 166:329Google Scholar
  64. 64.
    Barbacid M (1987) Ras genes. Annu Rev Biochem 56:779–827PubMedGoogle Scholar
  65. 65.
    Lee JC, Wang ST, Lai MD, Lin YJ, Yang HB (1996) k-ras gene mutation is a useful predictor of the survival of early stage colorectal cancers. Anticancer Res 16:3839–3844PubMedGoogle Scholar
  66. 66.
    Font A, Abad A, Monzo M, Sanchez JJ, Guillot M, Manzano JL, et al (2001) Prognostic value of k-ras mutations and allelic imbalance of chromosome 18q in patients with resected colorectal cancer. Dis Colon Rectum 44:549–557PubMedGoogle Scholar
  67. 67.
    Samowitz WS, Curtin K, Schaffer D, et al (2000) Relationship of Ki-ras mutations in colon cancer to tumor location, stage, and survival: a population-based study. Cancer Epidemiol Biomarkers Prev 9:1193–1197PubMedGoogle Scholar
  68. 68.
    Kressner U, Bjorheim J, Westring S (1998) ki-ras mutations and prognosis in colorectal cancer. Eur J Cancer 34:518–521CrossRefPubMedGoogle Scholar
  69. 69.
    Andreyev HJNA, Norman AR, Cunningham D, Oates JR, Clarke PA (1998) Kirsten ras mutations in patients with colorectal cancer: the multicenter "RASCAL" study. J Natl Cancer Inst 90:675–684CrossRefPubMedGoogle Scholar
  70. 70.
    Elnatan J, Goh HS, Smith DR (1996) C-ki-ras activation and the biological behaviour of proximal and distal colonic adenocarcinomas. Eur J Cancer 32A:491–497CrossRefPubMedGoogle Scholar
  71. 71.
    Kastrinakis WV, Ramchurren N, Maggard M, Steele G, Summerhayes IC (1995) k-ras status does not predict successful hepatic resection of colorectal cancer metastasis. Arch Surg 130:9–14PubMedGoogle Scholar
  72. 72.
    Finkelstein SD, Sayegh R, Bakker A, Swalsky P (1993) Determination of tumor aggressiveness in colorectal cancer by k-ras-2 analysis. Arch Surg 128:526–532PubMedGoogle Scholar
  73. 73.
    Forrester K, Almoguera C, Han K, Grizzle WE, Perucho M (1987) Detection of high incidence of k-ras oncogenes during human colon tumorigenesis. Nature 327:298–303Google Scholar
  74. 74.
    Capella G, Cronauer-Mitra S, Peinado M, Perucho M (1991) Frequency and spectrum of mutations at codon 12 and 13 of the c-k-ras gene in human tumors. Environ Health Perspect 93:125–131PubMedGoogle Scholar
  75. 75.
    Fearon E (1993) k-ras gene mutation as a pathogenic and diagnostic marker in human cancer. J Natl Cancer Inst 85:1978–1981PubMedGoogle Scholar
  76. 76.
    Fearon ER, Cho KR, Nigro JM, et al (1990) Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247:49–56PubMedGoogle Scholar
  77. 77.
    Cho KR, Fearon ER (1995) DCC: linking tumor suppressor genes and altered cell surface interactions in cancer? Eur J Cancer 31A:1055–1060Google Scholar
  78. 78.
    Itoh F, Hinoda Y, Ohe M, et al (1993) Decreased expression of DCC mRNA in human colorectal cancers. Int J Cancer 53:260–263Google Scholar
  79. 79.
    Lino H, Fukayama M, Maeda Y, et al (1994) Molecular genetics for clinical management of colorectal carcinoma. 17p, 18q and 22q loss of heterozygosity and decreased DCC expression are correlated with the metastatic potential. Cancer 73:1324–1331PubMedGoogle Scholar
  80. 80.
    Klingelhutz AJ, Hedrick L, Cho KR, McDougall JK (1995) The DCC gene suppresses the malignant phenotype of transformed human epithelial cells. Oncogene 10:1581–1586PubMedGoogle Scholar
  81. 81.
    Jernvall P, Mäkinen MJ, Karttunen TJ, Mäkelä J, Vihko P (1999) Loss of heterozygosity at 18q21 is indicative of recurrence and therefore poor prognosis in a subset of colorectal cancers. Br J Cancer 79:903–908Google Scholar
  82. 82.
    Carethers JM, Hawn MT, Greenson JK, Hitchcock CL, Boland CR (1998) Prognostic significance of allelic loss at chromosome 18q21 for stage II colorectal cancer. Gastroenterology 114:1188–1195PubMedGoogle Scholar
  83. 83.
    Martinez-Lopez E, Abad A, Font A, et al (1998) Allelic loss on chromosome 18q as a prognostic marker in stage II colorectal cancer. Gastroenterology 114:1180–1187PubMedGoogle Scholar
  84. 84.
    Ogunbiyi OA, Goodfellow PJ, Herfarth K, et al (1998) Confirmation that chromosome 18q allelic loss in colon cancer is a prognostic indicator. J Clin Oncol 16:427–433Google Scholar
  85. 85.
    Watanabe T, Wu TT, Catalano PJ, Ueki T, Satriano R, Haller DG, Benson AB, Hamilton SR (2001) Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 344:1196–1206CrossRefPubMedGoogle Scholar
  86. 86.
    Fazeli A, Dickinson SL, Hermiston ML, et al (1997) Phenotype of mice lacking functional deleted in colorectal cancer (DCC) gene. Nature 386:796–804Google Scholar
  87. 87.
    Gotley DC, Reeder JA, Fawcett J, et al (1995) The deleted in colorectal cancer (DCC) gene is consistently expressed in colorectal cancers and metastases. Oncogene 13:787–795Google Scholar
  88. 88.
    Hahn SA, Schutte M, Shamshul Hoque ATMS, et al (1996) DPC4: a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353PubMedGoogle Scholar
  89. 89.
    Eppert K, Scherer SW, Ozcelik H, et al (1996) MADR2 maps to 18q21 and encodes a TGF-β-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86:543–552Google Scholar
  90. 90.
    Sun XF, Rütten S, Zhang H, Nordenskjöld B (1999) Expression of the deleted in colorectal cancer gene is related to prognosis in DNA diploid and low proliferative colorectal adenocarcinoma. J Clin Oncol 17:1745PubMedGoogle Scholar
  91. 91.
    Halling KC, French AJ, McDonnell SK, et al (1999) Microsatellite instability and 8p allelic imbalance in stage B2 and C colorectal cancers. J Natl Cancer Inst 15:1295–1303CrossRefGoogle Scholar
  92. 92.
    Goi T, Yamaguchi A, Nakagawara G, Urano T, Shiku H, Furukawa K (1998) Reduced expression of deleted colorectal carcinoma protein in established colon cancers. Br J Cancer 77:466–471Google Scholar
  93. 93.
    Reymond MA, Dworak O, Remke S, Hohenberger W, Kirchner T, Köckeling F (1998) DCC protein as a predictor of distant metastases after curative surgery for rectal cancer. Dis Colon Rectum 41:755–760PubMedGoogle Scholar
  94. 94.
    Cohn KH, Ornstein DL, Wang F, et al (1997) The significance of allelic deletions and aneuploidy in colorectal carcinoma. Cancer 79:233–244CrossRefPubMedGoogle Scholar
  95. 95.
    Shibata D, Reale MA, Lavin P, et al (1996) The DCC protein and prognosis in colorectal cancer. N Engl J Med 335:1727–1735PubMedGoogle Scholar
  96. 96.
    Kato M, Ito Y, Kobayashi S, Isono K (1996) Detection of DCC and ki-ras gene alterations in colorectal carcinoma tissue as prognostic markers for liver metastatic recurrence. Cancer 77:1729–1735PubMedGoogle Scholar
  97. 97.
    Young J, Buttenshaw R, Butterworth L, et al (1994) Association of the SS genotype of the L-myc gene and loss of 18q sequences with a worse clinical prognosis in colorectal cancers. Oncogene 9:1053–1056PubMedGoogle Scholar
  98. 98.
    Beverley SM, Ellenberger TE, Cordingly JS (1984) Primary structure the gene encoding the bifunctional dihydrofolate reduction-thymidylate synthase of Leishmania major. Proc Natl Acad Sci USA 83:2584–2589Google Scholar
  99. 99.
    Conrad AH, Ruddle FH (1972) Regulation of thymidylate synthase activity in cultured mammalian cells. J Cell Sci 10:471–486PubMedGoogle Scholar
  100. 100.
    Aschele C, Sobrero A, Faderan MA, Bertino JR (1992) Novel mechanism(s) of resistance to 5-Fluorouracil in human colon cancer (HCT-8) sublines following exposure to two different clinically relevant dose schedules. Cancer Res 52:1855–1864PubMedGoogle Scholar
  101. 101.
    Copur S, Aiba K, Drake JC, et al (1995) Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5-fluorouracil. Biochem Pharmacol 49:1419CrossRefPubMedGoogle Scholar
  102. 102.
    Leichman L, Lenz HJ, Leichman CG, et al (1995) Quantitation of intratumoral thymidylate synthase expression predicts for resistance to protracted infusion of 5-fluorouracil and weekly leucovorin in disseminated colorectal cancers: preliminary report from an ongoing trial. Eur J Cancer 31:1306–1310CrossRefGoogle Scholar
  103. 103.
    YamachikaT, Nakanishi H, Inada KI, Tsukamoto T, Kato T, Fukushima M, et al (1998) A new prognostic factor for colorectal carcinoma, thymidylate synthase, and its therapeutic significance. Cancer 82:70–77CrossRefPubMedGoogle Scholar
  104. 104.
    Edler D, Kressner U, Ragnhammar, Johnston PG, Magnusson I, Glimelius B, et al (2000) Immunohistochemically detected thymidylate synthase in colorectal cancer: an independent prognostic factor of survival. Clin Cancer Res 6:488–492PubMedGoogle Scholar
  105. 105.
    Cascinu S, Graziano F, Valentini, Catalano V, Giordani P Stacciolo MP, et al (2001) Vascular endothelial growth factor expression, S-phase fraction and thymidylate synthase quantitation in node-positive colon cancer: relationships with tumor recurrence and resistance to adjuvant chemotherapy. Ann Oncol 12:239–244CrossRefPubMedGoogle Scholar
  106. 106.
    Aschele C, Debernardis D, Tunesi G, Maley F, Sobrero A (2000) Thymidylate synthase protein expression in primary colorectal cancer compared with corresponding distant metastases and relationship with the clinical response to 5-fluorouracil. Clin Cancer Res 6:4797–4802PubMedGoogle Scholar
  107. 107.
    Cascinu S, Catalano V, Aschele C, Barni S, Debernadis D, Gallo L, et al (2000) Immunohistochemical determination of p53 protein does not predict clinical response in advanced colorectal cancer with low thymidylate synthase expression receiving a bolus 5-fluorouracil-leucovorin combination. Ann Oncol 11:1053–1056CrossRefPubMedGoogle Scholar
  108. 108.
    Van Triest B, Pinedo HM, Blaauwgeers JLG, van Diest PJ, Schoenmakers PS, Voorn DA, et al (2000) Prognostic role of thymidylate synthase, thymidine phosphorylase/platelet-derived endothelial growth factor, and proliferation markers in colorectal cancer. Clin Cancer Res 6:1063–1072PubMedGoogle Scholar
  109. 109.
    Edler D, Hallström M, Johnston PG, Magnusson I, Ragnhammar P, Blomgren H (2000) Thymidylate synthase expression: an independent prognostic factor for local recurrence, distant metastasis, disease free-survival and overall survival in rectal cancer. Clin Cancer Res 6:1378–1384PubMedGoogle Scholar
  110. 110.
    Aschele C, Debernardis D, Tunesi G, Bandelloni R, Cascinu S, Catalano V, et al (2000) Schedule-dependent correlation between the level of thymidylate synthase (TS) protein expression and clinical response to different 5-fluorouracil (5-FU) regimens in advanced colorectal cancer. Proc Am Soc Clin Oncol 19:251aGoogle Scholar
  111. 111.
    Paradiso A, Simone G, Petroni S, Leone B, Vallejo C, Lacava J, et al (2000) Thymidylate synthase and p53 primary tumour expression as predictive factors for advanced colorectal cancer patients. Br J Cancer 82:560–567Google Scholar
  112. 112.
    Davies MM, Johnston PG, Kaur S, Allen-Mersh TG (1999) Colorectal liver metastasis thymidylate synthase staining correlates with response to hepatic arterial floxuridine. Clin Cancer Res 5:325–328PubMedGoogle Scholar
  113. 113.
    Aschele C, Debernardis D, Casazza S, Antonelli G, Tunesi G, Baldo C, et al (1999) Immunohistochemical quantitation of thymidylate synthase expression in colorectal cancer metastases predicts for clinical outcome to fluorouracil-based chemotherapy. J Clin Oncol 17:1760–1772PubMedGoogle Scholar
  114. 114.
    Cascinu S, Aschele C, Barni S, Debernadis D, Baldo C, Tunesi G, et al (1999) Thymidylate synthase protein expression in advanced colon cancer: correlation with the site of metastasis and the clinical response to leucovorin-modulated bolus 5-fluorouracil. Clin Cancer Res 5:1996–1999PubMedGoogle Scholar
  115. 115.
    Findlay MPN, Cunningham D, Morgan G, Clinton S, Hardcastle A, Aherne GW (1997) Lack of correlation between thymidylate synthase levels in primary colorectal tumours and subsequent response to chemotherapy. Br J Cancer 75:903–909Google Scholar
  116. 116.
    Johnston PG, Fisher ER, Rockette HE, Fisher B, Wolmark M, Drake JC, et al (1994) The role of thymidylate synthase expression in prognosis and outcome of adjuvant chemotherapy in patients with rectal cancer. J Clin Oncol 12:2640–2647PubMedGoogle Scholar
  117. 117.
    Lenz H-J, Hayashi K, Solonga D, Danenberg KD, Danenberg PV, Metzger R, et al (1998) P53 point mutations and thymidylate synthase messenger RNA levels in disseminated colorectal cancer: an analysis of response and survival. Clin Cancer Res 4:1243–1250PubMedGoogle Scholar
  118. 118.
    Leichman CG, Lenz HJ, Leichman L, Danenberg K, Baranda J, Groshen S, et al (1997) Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted-infusion fluorouracil and weekly leucovorin. J Clin Oncol 15:3223–3229PubMedGoogle Scholar
  119. 119.
    Kornmann M, Link KH, Lenz H-J, Pillasch J, Metzger R, Butzer U, et al (1997) Thymidylate synthase is a predictor for response and resistance in hepatic artery infusion chemotherapy. Cancer Lett 118:29–35CrossRefGoogle Scholar
  120. 120.
    Gorlick R, Metzger R, Danenberg KD, Solonga D, Miles JS, Longo GSA, et al (1998) Higher levels of thymidylate synthase gene expression are observed in pulmonary as compared with hepatic metastases of colorectal adenocarcinoma. J Clin Oncol 16:1465–1469Google Scholar
  121. 121.
    Sanguedolce R, Vultaggio G, Sanguedolce F, Modica G, Li Volsi F, Diana G, et al (1998) The role of thymidylate synthase levels in the prognosis and the treatment of patients with colorectal cancer. Anticancer Res 18:1515–1520PubMedGoogle Scholar
  122. 122.
    Moghaddam A, Zang HAT, Fan TP, et al (1995) Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc Natl Acad Sci USA 92:988–1002PubMedGoogle Scholar
  123. 123.
    Takebayashi Y, Akiyama S, Akiba S, Yamada K, Miyadera K, Sumizawa T, et al (1996) Clinicopathologic and prognostic significance of an angiogenic factor, thymidine phosphorylase, in human colorectal carcinoma. J Natl Cancer Inst 88:1110–1117PubMedGoogle Scholar
  124. 124.
    Metzger R, Danenberg K, Leichman CG, Solonga D, Schwartz EL, Wadler S, et al (1998) High basal level gene expression of thymidine phosphorylase (platelet-derived endothelial growth factor) in colorectal tumors is associated with nonresponse to 5-fluorouracil. Clin Cancer Res 4:2371–2376PubMedGoogle Scholar
  125. 125.
    Saito S, Tsuno N, Nagawa H, Sunami E, Zhengxi J, Osada T, et al (2000) Expression of platelet-derived endothelial cell growth factor correlates with good prognosis in patients with colorectal carcinoma. Cancer 88:42–49CrossRefPubMedGoogle Scholar
  126. 126.
    Naguib FNM, El Kouni AM, Cha S (1985) Enzymes of uracil catabolism in normal and neoplastic tissues. Cancer Res 45:5405PubMedGoogle Scholar
  127. 127.
    Heggie GD, Sommadossi JP, Cross DS, Huster WJ, Diasio RB (1987) Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res 47:2203–2206PubMedGoogle Scholar
  128. 128.
    Solonga D, Danenberg KD, Johnson M, et al (2000) Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 6:1322–1327PubMedGoogle Scholar
  129. 129.
    Aaltonen LA, Peltomaki P, Leach FS, Sistonen P, Pylkkänen L, Mecklin JP, et al (1993) Clues to the pathogenesis of familial colorectal cancer. Science 260:812–816PubMedGoogle Scholar
  130. 130.
    Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M, et al (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561PubMedGoogle Scholar
  131. 131.
    Peltomaki P, Aaltonen LA, Sistonen P, Pylkkanen L, Mecklin JP, Järvinen H, et al (1993) Genetic mapping of a locus predisposing to human colorectal cancer. Science 260:810–812PubMedGoogle Scholar
  132. 132.
    Aaltonen LA, Peltomaki P, Mecklin JP, Järvinen H, Jass JR, Green JS, et al (1994) Replication errors in benign and malignant tumors from hereditary non-polyposis colorectal cancer patients. Cancer Res 54:1645–1648PubMedGoogle Scholar
  133. 133.
    Lothe RA, Peltomäki P, Meling GI, Aaltonen LA, Nystrom-Lahti M, Pylkkänen L, et al (1993) Genomic instability in colorectal cancer: relationship of clinicopathological variables and family history. Cancer Res 53:5849–5852PubMedGoogle Scholar
  134. 134.
    Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260:816–819PubMedGoogle Scholar
  135. 135.
    Kim H, Jen J, Vogelstein B, Hamilton SR (1994) Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol 145:148–156PubMedGoogle Scholar
  136. 136.
    Möslein G, Testet DJ, Lindor NM, Honchel R, Cunningham JM, French AJ (1996) Microsatellite instability and mutation analysis of hMSH2 and hMLH1 in patients with sporadic, familial and hereditary colorectal cancer. Hum Mol Genet 5:1245–1252PubMedGoogle Scholar
  137. 137.
    Lynch HT, Smyrk TC, Watson P, Lanspa SJ, Lynch JF, Lynch PM (1993) Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology 104:1535–1549PubMedGoogle Scholar
  138. 138.
    Guidoboni M, Gafà R, Viel A, Doglioni C, Russo A, Santini A, et al (2001) Microsatellite instability and high content of activated cytotoxic lymphocytes identify colon cancer patients with a favorable prognosis. Am J Pathol 159:297–304PubMedGoogle Scholar
  139. 139.
    Ward R, Meagher A, Tomlinson I, O'Connor T, Norrie M, Wu R, et al (2001) Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut 48:821–829PubMedGoogle Scholar
  140. 140.
    Gafà R, Maestri I, Matteuzzi M, Santini A, Ferretti S, Cavazzini L, et al (2000) Sporadic colorectal adenocarcinomas with high-frequency microsatellite instability. Cancer 89:2025–2037CrossRefPubMedGoogle Scholar
  141. 141.
    Wright CM, Dent OF, Barker M, Newland RC, Chapuis PH, Bokey EL (2000) Prognostic significance of extensive microsatellite instability in sporadic clinicopathological stage C colorectal cancer. Br J Surg 87:1197–1202CrossRefPubMedGoogle Scholar
  142. 142.
    Hemminki A, Mecklin JP, Jarvinen H, Aaltonen LA, Joensuu H (2000) Microsatellite instability as a favorable prognostic indicator in patients with colorectal cancer receiving chemotherapy. Gastroenterology 119:921–928PubMedGoogle Scholar
  143. 143.
    Elsaleh H, Joseph D, Grieu F, Zeps N, Spry N, Iacopetta B (2000) Association of tumour site and sex with survival benefit from adjuvant chemotherapy in colorectal cancer. Lancet 355:1745–1750PubMedGoogle Scholar
  144. 144.
    Gonzalez-Garcia I, Moreno V, Navarro M, Marti-Rague J, Marcuello E, Benasco C, et al (2000) Standardized approach for microsatellite instability detection in colorectal carcinomas. J Natl Cancer Inst 92:544–549CrossRefPubMedGoogle Scholar
  145. 145.
    Gryfe R, Kim H, Hsieh ET, Aronson MD, Holowaty EJ, Bull SB, et al (2000) Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 342:69–77PubMedGoogle Scholar
  146. 146.
    Liang JT, Chang KJ, Chen JC, Lee CC, Cheng YM, Hsu HC, Chien CT, Wang SM (1999) Clinicopathological and carcinogenetic appraisal of DNA replication error in sporadic T3N0M0 stage colorectal cancer after curative resection. Hepatogastroenterology 46:883–890Google Scholar
  147. 147.
    Johannsdottir JT, Bergthorsson JT, Gretarsdottir S, Kristjansson AK, Ragnarsson G, Jonasson JG, et al (1999) Replication error in colorectal carcinoma: association with loss of heterozygosity at mismatch repair loci and clinicopathological variables. Anticancer Res 19:1821–1826PubMedGoogle Scholar
  148. 148.
    Jernvall P, Mäkinen MJ, Karttunen TJ, Mäkelä J, Vihkoo P (1999) Microsatellite instability: impact on cancer progression in proximal and distal colorectal cancers. Eur J Cancer 35:197–201CrossRefPubMedGoogle Scholar
  149. 149.
    Salahshor S, Kressner U, Fischer H, Lindmark G, Glimelius B, Pahlman L, et al (1999) Microsatellite instability in sporadic colorectal cancer is not an independent prognostic factor. Br J Cancer 81:190–193CrossRefPubMedGoogle Scholar
  150. 150.
    Feeley KM, Fullard JF, Heneghan MA, Smith T, Maher M, Murphy RP, et al (1999) Microsatellite instability in sporadic colorectal carcinoma is not an indicator of prognosis. J Pathol 188:14–17CrossRefPubMedGoogle Scholar
  151. 151.
    Bubb VJ, Curtis LJ, Cunningham C, Dunlop MG, Carothers AD, Morris RG, et al (1996) Microsatellite instability and the role of hMSH2 in sporadic colorectal cancer. Oncogene 12:2641–2649PubMedGoogle Scholar
  152. 152.
    Schmoll HJ, Büchele T, Grothey A, Dempke W (1999) Where do we stand with 5-FU? Semin Oncol 26:589–605Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • B. Klump
    • 1
  • O. Nehls
    • 1
  • T. Okech
    • 1
  • C.-J. Hsieh
    • 1
  • V. Gaco
    • 1
  • F. S. Gittinger
    • 1
  • M. Sarbia
    • 2
  • F. Borchard
    • 3
  • A. Greschniok
    • 4
  • H. H. Gruenagel
    • 5
  • R. Porschen
    • 6
  • M. Gregor
    • 1
  1. 1.Department of Internal Medicine IUniversity HospitalTübingenGermany
  2. 2.Institute of PathologyHeinrich Heine University DüsseldorfDüsseldorfGermany
  3. 3.Institute of PathologyHospital AschaffenburgAschaffenburgGermany
  4. 4.Institute of PathologyUniversity Hospital TübingenTübingenGermany
  5. 5.Department of SurgeryEvangelisches Hospital DüsseldorfDüsseldorfGermany
  6. 6.Department of Internal MedicineCentral Hospital Bremen-OstBremenGermany

Personalised recommendations