Advertisement

Induction of angiogenic and inflammation-associated dermal biomarkers following acute UVB exposure on bio-engineered pigmented dermo-epidermal skin substitutes in vivo

  • Katarzyna Micka-Michalak
  • Thomas Biedermann
  • Ernst Reichmann
  • Martin Meuli
  • Agnes S. Klar
Original Article

Abstract

Purpose

Ultraviolet (UV) radiation adversely affects skin health at cellular and molecular levels. Hence, UV radiation can directly induce inflammatory responses in the dermis by inducing erythema, edema, inflammation, dermal fibroblasts alterations, and extracellular matrix modifications.

Methods

Human keratinocytes, melanocytes, and fibroblasts were isolated from skin biopsies, cultured, and expanded in vitro. Fibroblasts were seeded into collagen type I hydrogels that were subsequently covered by keratinocytes and melanocytes. These pigmented dermo-epidermal skin substitutes (pigmDESS) were transplanted for 5 weeks onto full-thickness skin wounds on the back of immuno-incompetent rats, exposed to a single UVB dose of 250 mJ/cm2 or unexposed and excised after 1 week. The effects onto the dermis were assessed regarding cell number, cell phenotype, and cell proliferation. Local inflammation by granulocytes (HIS48) or macrophages (CD11b, iNOS) was analyzed by immunohistochemistry staining.

Results

We observed a significantly enhanced ingrowth rate of blood capillaries, but not of lymphatic capillaries at 1 week post-irradiation. Moreover, the enhanced vascularization of pigmDESS after UVB exposure was concomitant with a high infiltration of granulocytes and monocytes/macrophages to the dermal part of grafts. In addition, a heterogeneous expression of HIF-1α and TNFα was detected at this early phase after UVB exposure. In local cellular response examination, results only show a moderate cell proliferation in the dermis.

Conclusions

We were able to define early markers of UVB-induced effects in the dermis of pigmDESS. Overall, a single UVB dose induces temporary acute angiogenic and immune responses during the early post-irradiation phase in vivo.

Keywords

Acute UVB Human skin substitute Tissue engineering Blood- and lymph-angiogenesis Inflammatory response Granulocyte infiltration Monocyte/macrophage recruitment HIF-1α expression 

Notes

Acknowledgements

This work was financially supported by the Clinical Research Priority Programs (CRPP) of the Faculty of Medicine of the University of Zurich. We are particularly grateful to the Gaydoul Foundation and the sponsors of “DonaTissue” (Thérèse Meier and Robert Zingg) for their generous financial support and interest in our work.

Compliance with ethical standards

Conflict of interest

ER and MM are co-founding members and shareholders of “Cutiss AG”, a company to fund the further development of the tissue-engineered skin substitutes. All other authors declare that they have no conflict of interest.

References

  1. 1.
    Braziulis E, Biedermann T, Hartmann-Fritsch F, Schiestl C, Pontiggia L, Bottcher-Haberzeth S et al (2011) Skingineering I: engineering porcine dermo-epidermal skin analogues for autologous transplantation in a large animal model. Pediatr Surg Int 27:241–247CrossRefGoogle Scholar
  2. 2.
    Bottcher-Haberzeth S, Biedermann T, Pontiggia L, Braziulis E, Schiestl C, Hendriks B et al (2013) Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes. J Investig Dermatol 133:316–324CrossRefGoogle Scholar
  3. 3.
    Bottcher-Haberzeth S, Klar AS, Biedermann T, Schiestl C, Meuli-Simmen C, Reichmann E et al (2013) “Trooping the color”: restoring the original donor skin color by addition of melanocytes to bioengineered skin analogs. Pediatr Surg Int 29:239–247CrossRefGoogle Scholar
  4. 4.
    Schiestl C, Biedermann T, Braziulis E, Hartmann-Fritsch F, Bottcher-Haberzeth S, Arras M et al (2011) Skingineering II: transplantation of large-scale laboratory-grown skin analogues in a new pig model. Pediatr Surg Int 27:249–254CrossRefGoogle Scholar
  5. 5.
    Klar AS, Bottcher-Haberzeth S, Biedermann T, Schiestl C, Reichmann E, Meuli M (2014) Analysis of blood and lymph vascularization patterns in tissue-engineered human dermo-epidermal skin analogs of different pigmentation. Pediatr Surg Int 30:223–231CrossRefGoogle Scholar
  6. 6.
    Klar AS, Guven S, Biedermann T, Luginbuhl J, Bottcher-Haberzeth S, Meuli-Simmen C et al (2014) Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells. Biomaterials 35:5065–5078CrossRefGoogle Scholar
  7. 7.
    Marino D, Luginbuhl J, Scola S, Meuli M, Reichmann E (2014) Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med 6:221ra14CrossRefGoogle Scholar
  8. 8.
    Bottcher-Haberzeth S, Biedermann T, Klar AS, Widmer DS, Neuhaus K, Schiestl C et al (2015) Characterization of pigmented dermo-epidermal skin substitutes in a long-term in vivo assay. Exp Dermatol 24:16–21CrossRefGoogle Scholar
  9. 9.
    Biedermann T, Klar AS, Bottcher-Haberzeth S, Michalczyk T, Schiestl C, Reichmann E et al (2015) Long-term expression pattern of melanocyte markers in light- and dark-pigmented dermo-epidermal cultured human skin substitutes. Pediatr Surg Int 31:69–76CrossRefGoogle Scholar
  10. 10.
    Klar AS, Biedermann T, Michalak K, Michalczyk T, Meuli-Simmen C, Scherberich A et al (2017) Human adipose mesenchymal cells inhibit melanocyte differentiation and the pigmentation of human skin via increased expression of TGF-beta1. J Investig Dermatol 137:2560–2569CrossRefGoogle Scholar
  11. 11.
    Michalczyk T, Biedermann T, Bottcher-Haberzeth S, Klar AS, Meuli M, Reichmann E (2018) UVB exposure of a humanized skin model reveals unexpected dynamic of keratinocyte proliferation and Wnt inhibitor balancing. J Tissue Eng Regen Med 12:505–515CrossRefGoogle Scholar
  12. 12.
    Gilchrest BA (2013) Photoaging. J Investig Dermatol 133:E2–E6CrossRefGoogle Scholar
  13. 13.
    Sanches Silveira JE, Myaki Pedroso DM (2014) UV light and skin aging. Rev Environ Health 29:243–254CrossRefGoogle Scholar
  14. 14.
    Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Voorhees JJ (1997) Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med 337:1419–1428CrossRefGoogle Scholar
  15. 15.
    Debacq-Chainiaux F, Leduc C, Verbeke A, Toussaint O (2012) UV, stress and aging. Dermato-endocrinology 4:236–240CrossRefGoogle Scholar
  16. 16.
    Bruls WAG, Vanweelden H, Vanderleun JC (1984) Transmission of UV-radiation through human epidermal layers as a factor influencing the minimal erythema dose. Photochem Photobiol 39:63–67CrossRefGoogle Scholar
  17. 17.
    Dai G, Freudenberger T, Zipper P, Melchior A, Grether-Beck S, Rabausch B et al (2007) Chronic ultraviolet B irradiation causes loss of hyaluronic acid from mouse dermis because of down-regulation of hyaluronic acid synthases. Am J Pathol 171:1451–1461CrossRefGoogle Scholar
  18. 18.
    Tessem MB, Bathen TF, Cejkova J, Midelfart A (2005) Effect of UV-A and UV-B irradiation on the metabolic profile of aqueous humor in rabbits analyzed by H-1 NMR spectroscopy. Investig Ophthalmol Vis Sci 46:776–781CrossRefGoogle Scholar
  19. 19.
    Imayama S, Nakamura K, Takeuchi M, Hori Y, Takema Y, Sakaino Y et al (1994) Ultraviolet-B irradiation deforms the configuration of elastic fibers during the induction of actinic elastosis in rats. J Dermatol Sci 7:32–38CrossRefGoogle Scholar
  20. 20.
    Imokawa G, Takema Y, Yorimoto Y, Tsukahara K, Kawai M, Imayama S (1995) Degree of ultraviolet-induced tortuosity of elastic fibers in rat skin is age-dependent. J Investig Dermatol 105:254–258CrossRefGoogle Scholar
  21. 21.
    Imokawa G (2009) Mechanism of UVB-induced wrinkling of the skin: paracrine cytokine linkage between keratinocytes and fibroblasts leading to the stimulation of elastase. J Investig Dermatol Symp Proc 14:36–43CrossRefGoogle Scholar
  22. 22.
    Pontiggia L, Biedermann T, Meuli M, Widmer D, Bottcher-Haberzeth S, Schiestl C et al (2009) Markers to evaluate the quality and self-renewing potential of engineered human skin substitutes in vitro and after transplantation. J Investig Dermatol 129:480–490CrossRefGoogle Scholar
  23. 23.
    Biedermann T, Pontiggia L, Bottcher-Haberzeth S, Tharakan S, Braziulis E, Schiestl C et al (2010) Human eccrine sweat gland cells can reconstitute a stratified epidermis. J Investig Dermatol 130:1996–2009CrossRefGoogle Scholar
  24. 24.
    Pontiggia L, Klar A, Bottcher-Haberzeth S, Biedermann T, Meuli M, Reichmann E (2013) Optimizing in vitro culture conditions leads to a significantly shorter production time of human dermo-epidermal skin substitutes. Pediatr Surg Int 29:249–256CrossRefGoogle Scholar
  25. 25.
    Schneider J, Biedermann T, Widmer D, Montano I, Meuli M, Reichmann E et al (2009) Matriderm versus integra: a comparative experimental study. Burns 35:51–57CrossRefGoogle Scholar
  26. 26.
    Bottcher-Haberzeth S, Biedermann T, Schiestl C, Hartmann-Fritsch F, Schneider J, Reichmann E et al (2012) Matriderm (R) 1 mm versus Integra (R) single layer 1.3 mm for one-step closure of full thickness skin defects: a comparative experimental study in rats. Pediatr Surg Int 28:171–177CrossRefGoogle Scholar
  27. 27.
    Hanahan D, Christofori G, Naik P, Arbeit J (1996) Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer 32:2386–2393CrossRefGoogle Scholar
  28. 28.
    Fidler IJ, Ellis LM (1994) The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79:185–188CrossRefGoogle Scholar
  29. 29.
    Iruela-Arispe ML, Dvorak HF (1997) Angiogenesis: a dynamic balance of stimulators and inhibitors. Thromb Haemost 78:672–677CrossRefGoogle Scholar
  30. 30.
    Bielenberg DR, Bucana CD, Sanchez R, Donawho CK, Kripke ML, Fidler IJ (1998) Molecular regulation of UVB-induced cutaneous angiogenesis. J Investig Dermatol 111:864–872CrossRefGoogle Scholar
  31. 31.
    Dejana E, Corada M, Lampugnani MG (1995) Endothelial cell-to-cell junctions. FASEB J 9:910–918CrossRefGoogle Scholar
  32. 32.
    Yano K, Oura H, Detmar M (2002) Targeted overexpression of the angiogenesis inhibitor thrombospondin-1 in the epidermis of transgenic mice prevents ultraviolet-B-induced angiogenesis and cutaneous photo-damage. J Investig Dermatol 118:800–805CrossRefGoogle Scholar
  33. 33.
    Kawada S, Ohtani M, Ishii N (2010) Increased oxygen tension attenuates acute ultraviolet-B-induced skin angiogenesis and wrinkle formation. Am J Physiol Regul Integr Comp Physiol 299:R694–R701CrossRefGoogle Scholar
  34. 34.
    Streit M, Velasco P, Riccardi L, Spencer L, Brown LF, Janes L et al (2000) Thrombospondin-1 suppresses wound healing and granulation tissue formation in the skin of transgenic mice. EMBO J 19:3272–3282CrossRefGoogle Scholar
  35. 35.
    Weidemann A, Johnson RS (2008) Biology of HIF-1 alpha. Cell Death Differ 15:621–627CrossRefGoogle Scholar
  36. 36.
    Malhotra R, Stenn KS, Fernandez LA, Braverman IM (1989) Angiogenic properties of normal and psoriatic skin associate with epidermis, not dermis. Lab Investig J Tech Methods Pathol 61:162–165Google Scholar
  37. 37.
    Detmar M (1996) Molecular regulation of angiogenesis in the skin. J Investig Dermatol 106:207–208CrossRefGoogle Scholar
  38. 38.
    Warren AG, Slavin SA (2007) Scar lymphedema: fact or fiction? Ann Plast Surg 59:41–45CrossRefGoogle Scholar
  39. 39.
    Avraham T, Clavin NW, Daluvoy SV, Fernandez J, Soares MA, Cordeiro AP et al (2009) Fibrosis is a key inhibitor of lymphatic regeneration. Plast Reconstr Surg 124:438–450CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Katarzyna Micka-Michalak
    • 1
    • 3
  • Thomas Biedermann
    • 1
    • 3
  • Ernst Reichmann
    • 1
    • 3
  • Martin Meuli
    • 2
    • 3
  • Agnes S. Klar
    • 1
    • 3
  1. 1.Tissue Biology Research Unit, Department of SurgeryUniversity Children’s Hospital ZurichZurichSwitzerland
  2. 2.Department of SurgeryUniversity Children’s Hospital ZurichZurichSwitzerland
  3. 3.Children’s Research CenterUniversity Children’s Hospital ZurichZurichSwitzerland

Personalised recommendations