Advertisement

Pediatric Surgery International

, Volume 34, Issue 11, pp 1215–1224 | Cite as

Is maintenance of the ileocecal valve important to the intestinal adaptation mechanisms in a weaning rat model of short bowel?

  • Guilherme Garcia Barros
  • Ana Cristina Aoun Tannuri
  • Ítalo Gerardo Rotondo
  • Vitor Van Vaisberg
  • Leandro Silveira Sarmento
  • Cícero Mendes Neto
  • Suellen Serafini
  • Josiane de Oliveira Gonçalves
  • Maria Cecília Mendonça Coelho
  • Uenis Tannuri
Original Article

Abstract

Purpose

To evaluate the role of maintenance of the ileocecal valve (ICV) in intestinal adaptation mechanisms, in a weaning rat experimental model of short bowel.

Methods

Forty animals were operated on to produce short bowel syndrome. They were divided into five groups: maintenance (MV) or resection of ICV (RV), kill after 4 days (MV4 and RV4) or 21 days (MV21 and RV21), and a control group (21-day-old rats). Body weights, small bowel and colon lengths and diameters, villus heights, crypt depths, lamina propria and muscle layer thickness, as well as the apoptosis index of villi and crypts and expression of pro- and anti-apoptotic genes, were studied.

Results

Preservation of the ICV promoted increased weight gain (p = 0.0001) and intestinal villus height after 21 days; crypt depth was higher in comparison to controls. It was verified a higher expression of Ki-67 in bowel villi and crypts (p = 0.018 and p = 0.015, respectively) in RV4 group and a higher expression in bowel villi of MV4 group animals (p = 0.03). The maintenance of ICV promoted late increased expression of the anti-apoptotic gene Bcl-XL in the colon (p = 0.043, p = 0.002, p = 0.01).

Conclusion

The maintenance of the ICV led to positive changes in this model.

Keywords

Bowel resection Short bowel syndrome Intestine Newborn Parenteral and enteral nutrition Rat 

Notes

Funding

No fundings.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Research involving human and/or animal participants

This article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Wester T, Lilja HE, Stenström P et al (2017) Absent ileocecal valve predicts the need for repeated step in children. Surgery 161:818–822CrossRefGoogle Scholar
  2. 2.
    Gutierrez IM, Kang KH, Jaksic T (2011) Neonatal short bowel syndrome. Semin Fetal Neonatal Med 16:157–163CrossRefGoogle Scholar
  3. 3.
    Diamanti A, Basso MS, Castro M et al (2008) Irreversible intestinal failure: prevalence and prognostic factors. J Pediatr Gastroenterol Nutr 47:450–457CrossRefGoogle Scholar
  4. 4.
    Petit LM, Girard D, Ganousse-Mazeron S et al (2016) Weaning off prognosis factors of home parenteral nutrition for children with primary digestive disease. J Pediatr Gastroenterol Nutr 62:462–468CrossRefGoogle Scholar
  5. 5.
    Goulet O, Ruemmele F, Lacaille F et al (2004) Irreversible intestinal failure. J Pediatr Gastroenterol Nutr 38:250–269CrossRefGoogle Scholar
  6. 6.
    Stanger JD, Oliveira C, Blackmore C et al (2013) The impact of multi-disciplinary intestinal rehabilitation programs on the outcome of pediatric patients with intestinal failure: a systematic review and meta-analysis. J Pediatr Surg 48:983–992CrossRefGoogle Scholar
  7. 7.
    Spencer A, Neaga A, West B et al (2005) Pediatric short bowel syndrome: redefining predictors of success. Ann Surg 242:403–409PubMedPubMedCentralGoogle Scholar
  8. 8.
    Khan FA, Squires RH, Litman HJ et al (2015) Pediatric intestinal failure consortium. Predictors of enteral autonomy in children with intestinal failure: a multicenter cohort study. J Pediatr 167:29–34.e1CrossRefGoogle Scholar
  9. 9.
    Goulet OJ, Revillon Y, Jan D et al (1991) Neonatal short bowel syndrome. J Pediatr 119:18–23CrossRefGoogle Scholar
  10. 10.
    Quigley EM, Borody TJ, Phillips SF et al (1984) Motility of the terminal ileum and ileocecal sphincter in healthy humans. Gastroenterology 87:857–866PubMedGoogle Scholar
  11. 11.
    Quirós-Tejeira RE, Ament ME, Reyen L et al (2004) Long-term parenteral nutritional support and intestinal adaptation in children with short bowel syndrome: a 25-year experience. J Pediatr 145:157–163CrossRefGoogle Scholar
  12. 12.
    Pérez-Arana G, Camacho-Ramírez A, Segundo-Iglesias MC et al (2015) A surgical model of short bowel syndrome induces a long-lasting increase in pancreatic beta-cell mass. Histol Histopathol 30:479–487PubMedGoogle Scholar
  13. 13.
    Hebiguchi T, Mezaki Y, Morii M et al (2015) Massive bowel resection upregulates the intestinal mRNA expression levels of cellular retinol-binding protein II and apolipoprotein A-IV and alters the intestinal vitamin A status in rats. Int J Mol Med 35:724–730CrossRefGoogle Scholar
  14. 14.
    Sukhotnik I, Berkowitz D, Dorfman T et al (2016) The role of the BMP signaling cascade in regulation of stem cell activity following massive small bowel resection in a rat. Pediatr Surg Int 32:169–174CrossRefGoogle Scholar
  15. 15.
    Sukhotnik I, Shahar YB, Pollak Y et al (2018) The role of intermediate filaments in maintaining integrity and function of intestinal epithelial cells after massive bowel resection in a rat. Pediatr Surg Int 34:217–225CrossRefGoogle Scholar
  16. 16.
    Onishi S, Kaji T, Yamada W et al (2016) The administration of ghrelin improved hepatocellular injury following parenteral feeding in a rat model of short bowel syndrome. Pediatr Surg Int 32:1165–1171CrossRefGoogle Scholar
  17. 17.
    Lai SW, de Heuvel E, Wallace LE et al (2017) Effects of exogenous glucagon-like peptide-2 and distal bowel resection on intestinal and systemic adaptive responses in rats. PLoS One 12:e0181453CrossRefGoogle Scholar
  18. 18.
    Yang Y, Zheng T, Zhou J et al (2018) Bile salt dependent lipase promotes intestinal adaptation in rats with massive small bowel resection. Biosci Rep.  https://doi.org/10.1042/BSR20180077 (Epub ahead of print; pii: BSR20180077) CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yang Q, Kock ND (2010) Intestinal adaptation following massive ileocecal resection in 20-day-old weanling rats. J Pediatr Gastroenterol Nutr 50:16–21CrossRefGoogle Scholar
  20. 20.
    Yang Q, Lan T, Chen Y et al (2012) Dietary fish oil increases fat absorption and fecal bile acid content without altering bile acid synthesis in 20-d-old weanling rats following massive ileocecal resection. Pediatr Res 72:38–42CrossRefGoogle Scholar
  21. 21.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefGoogle Scholar
  22. 22.
    Schurink M, Hulscher JB, Nieuwenhuijs VB et al (2014) A surgical perspective of the outcome of a multidisciplinary intestinal rehabilitation program for children with short bowel syndrome in The Netherlands. Transpl Proc 46:2102–2108CrossRefGoogle Scholar
  23. 23.
    Grant D, Abu-Elmagd K, Mazariegos G et al (2015) Intestinal Transplant Association. Intestinal transplant registry report: global activity and trends. Am J Transpl 15:210–219CrossRefGoogle Scholar
  24. 24.
    de Aro Braz MJ, Corbi LE, Tannuri ACA et al (2017) Analysis of the reversibility of biliary cirrhosis in young rats submitted to biliary obstruction. J Pediatr Surg 53:1408–1413CrossRefGoogle Scholar
  25. 25.
    Tannuri AC, Tannuri U, Coelho MC et al (2007) Experimental models of hepatectomy and liver regeneration using newborn and weaning rats. Clinics (Sao Paulo) 62:757–762CrossRefGoogle Scholar
  26. 26.
    Demehri FR, Stephens L, Herrman E et al (2015) Enteral autonomy in pediatric short bowel syndrome: predictive factors one year after diagnosis. J Pediatr Surg 50:131–135CrossRefGoogle Scholar
  27. 27.
    Gillingham MB, Dahly EM, Carey HV et al (2000) Differential jejunal and colonic adaptation due to resection and IGF-I in parenterally fed rats. Am J Physiol Gastrointest Liver Physiol 278:G700–G709CrossRefGoogle Scholar
  28. 28.
    Xu JM, Zhong YS, Jin DY et al (2008) Effect of dietary fiber and growth hormone on colonic adaptation in short bowel syndrome treated by enteral nutrition. World J Surg 32:1832–1839CrossRefGoogle Scholar
  29. 29.
    Goulet O, Colomb-Jung V, Joly F (2009) Role of the colon in short bowel syndrome and intestinal transplantation. J Pediatr Gastroenterol Nutr 48(Suppl 2):S66–S71CrossRefGoogle Scholar
  30. 30.
    Diamanti A, Basso MS, Panetta F et al (2012) Colon and intestinal adaptation in children with short bowel syndrome. J Parenter Enteral Nutr 36:501CrossRefGoogle Scholar
  31. 31.
    Longshore SW, Wakeman D, McMellen M et al (2009) Bowel resection induced intestinal adaptation: progress from bench to bedside. Minerva Pediatr 61:239–251 (review) PubMedGoogle Scholar
  32. 32.
    Roulis M, Flavell RA (2016) Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation 92:116–131CrossRefGoogle Scholar
  33. 33.
    Sangild PT, Ney DM, Sigalet DL et al (2014) Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome: translational relevance and challenges. Am J Physiol Gastrointest Liver Physiol 307:G1147–G1168CrossRefGoogle Scholar
  34. 34.
    Martin CA, Bernabe KQ, Taylor JA et al (2008) Resection-induced intestinal adaptation and the role of enteric smooth muscle. J Pediatr Surg 43:1011–1017CrossRefGoogle Scholar
  35. 35.
    Fiore NF, Ledniczky G, Liu Q et al (1998) Comparison of interleukin-11 and epidermal growth factor on residual small intestine after massive small bowel resection. J Pediatr Surg 33:24–29CrossRefGoogle Scholar
  36. 36.
    Knott AW, Erwin CR, Profitt SA et al (2003) Localization of post resection EGF receptor expression using laser capture microdissection. J Pediatr Surg 38:440–445CrossRefGoogle Scholar
  37. 37.
    Coelho MC, Tannuri U, Tannuri AC et al (2007) Expression of interleukin 6 and apoptosis-related genes in suckling and weaning rat models of hepatectomy and liver regeneration. J Pediatr Surg 42:613–619CrossRefGoogle Scholar
  38. 38.
    Welters CF, Piersma FE, Hockenbery DM et al (2000) The role of apoptosis during intestinal adaptation after small bowel resection. J Pediatr Surg 35:20–24CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guilherme Garcia Barros
    • 1
  • Ana Cristina Aoun Tannuri
    • 1
  • Ítalo Gerardo Rotondo
    • 1
  • Vitor Van Vaisberg
    • 1
  • Leandro Silveira Sarmento
    • 1
  • Cícero Mendes Neto
    • 1
  • Suellen Serafini
    • 1
  • Josiane de Oliveira Gonçalves
    • 1
  • Maria Cecília Mendonça Coelho
    • 1
  • Uenis Tannuri
    • 1
    • 2
  1. 1.Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30)University of Sao Paulo Medical SchoolSao PauloBrazil
  2. 2.Faculdade de Medicina da Universidade de São PauloSão PauloBrazil

Personalised recommendations