Pediatric Surgery International

, Volume 31, Issue 8, pp 701–710 | Cite as

RET gene is a major risk factor for Hirschsprung’s disease: a meta-analysis

  • C. Tomuschat
  • P. Puri
Original Article



During the past two decades several genes have been identified that control morphogenesis and differentiation of the enteric neuron system (ENS). These genes, when mutated or deleted, interfere with ENS development. RET gene is the major gene causing Hirschsprung’s disease (HD). Mutations in RET gene are responsible for 50 % of familial HD cases and 15–20 % of sporadic cases. The aim of this meta-analysis was to determine the incidence of RET gene mutations in patients with HD and to correlate RET mutations with the extent of aganglionosis.


A systematic literature-based search for relevant cohorts was performed using the terms “Hirschsprung’s disease AND RET Proto-oncogene”, “Hirschsprung’s disease AND genetic polymorphism” and “RET Gene”. The relevant cohorts of HD were systematically searched for reported mutations in the RET gene (RET+). Data on mutation site, phenotype, and familial or sporadic cases were extracted. Combined odds ratio (OR) with 95 % CI was calculated to estimate the strength of the different associations.


In total, 23 studies concerning RET with 1270 individuals affected with HD were included in this study. 228 (18 %) of these HDs were RET+. Of these 228, 96 (42 %) presented as rectosigmoid, 81 (36 %) long segment, 18 (8 %) as TCA, 16 (7 %) as total intestinal aganglionosis and 17 (7 %) individuals were RET+ but no extent of aganglionosis was not reported. In the rectosigmoid group, no significant association between phenotype and RET mutation could be shown (P = 0.006), whereas a clear association could be shown between long-segment disease, total colonic- and total intestinal aganglionosis and RET mutations (P = 0.0002). Mutations most often occurred in Exon 13 (24) and showed significant association with rectosigmoid disease (P = 0.004). No significance could be shown between RET+ and sporadic cases (P = 0.53), albeit a trend towards RET+ and Familial cases could be observed (P = 0.38).


The association with the RET gene and HD is well recognized. This study showed a clear association between RET+ mutations and the long-segment, total colonic- and total intestinal aganglionosis. Exon 13 appears to be a mutational “hot spot” in rectosigmoid disease.


RET gene Hirschsprung’s disease Meta-analysis 


  1. 1.
    Heanue TA, Pachnis V (2007) Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat Rev Neurosci 8:466–479PubMedCrossRefGoogle Scholar
  2. 2.
    Wartiovaara K, Salo M, Sariola H (1998) Hirschsprung’s disease genes and the development of the enteric nervous system. Ann Med 30:66–74PubMedCrossRefGoogle Scholar
  3. 3.
    Borrego S, Ruiz-Ferrer M, Fernandez RM, Antinolo G (2013) Hirschsprung’s disease as a model of complex genetic etiology. Histol Histopathol 28:1117–1136PubMedGoogle Scholar
  4. 4.
    Attie T, Pelet A, Edery P et al (1995) Diversity of RET proto-oncogene mutations in familial and sporadic Hirschsprung disease. Hum Mol Genet 4:1381–1386PubMedCrossRefGoogle Scholar
  5. 5.
    Angrist M, Bolk S, Thiel B et al (1995) Mutation analysis of the RET receptor tyrosine kinase in Hirschsprung disease. Hum Mol Genet 4:821–830PubMedCrossRefGoogle Scholar
  6. 6.
    Friedmacher F, Puri P (2013) Classification and diagnostic criteria of variants of Hirschsprung’s disease. Pediatr Surg Int 29:855–872PubMedCrossRefGoogle Scholar
  7. 7.
    Friedmacher F, Puri P (2013) Hirschsprung’s disease associated with down syndrome: a meta-analysis of incidence, functional outcomes and mortality. Pediatr Surg Int 29:937–946PubMedCrossRefGoogle Scholar
  8. 8.
    Angrist M, Bolk S, Halushka M, Lapchak PA, Chakravarti A (1996) Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet 14:341–344PubMedCrossRefGoogle Scholar
  9. 9.
    Barlow A, de Graaff E, Pachnis V (2003) Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 40:905–916PubMedCrossRefGoogle Scholar
  10. 10.
    Bondurand N, Natarajan D, Barlow A, Thapar N, Pachnis V (2006) Maintenance of mammalian enteric nervous system progenitors by SOX10 and endothelin 3 signalling. Development 133:2075–2086PubMedCrossRefGoogle Scholar
  11. 11.
    Moore MW, Klein RD, Farinas I et al (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79PubMedCrossRefGoogle Scholar
  12. 12.
    Nunez-Torres R, Fernandez RM, Acosta MJ et al (2011) Comprehensive analysis of RET common and rare variants in a series of Spanish Hirschsprung patients confirms a synergistic effect of both kinds of events. BMC Med Genet 12:138PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ruiz-Ferrer M, Fernandez RM, Antinolo G, Lopez-Alonso M, Eng C, Borrego S (2006) A complex additive model of inheritance for Hirschsprung disease is supported by both RET mutations and predisposing RET haplotypes. Genet Med 8:704–710PubMedCrossRefGoogle Scholar
  14. 14.
    Ruiz-Ferrer M, Torroglosa A, Luzon-Toro B et al (2011) Novel mutations at RET ligand genes preventing receptor activation are associated to Hirschsprung’s disease. J Mol Med (Berl) 89:471–480CrossRefGoogle Scholar
  15. 15.
    Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73PubMedCrossRefGoogle Scholar
  16. 16.
    Coyle D, Friedmacher F, Puri P (2014) The association between Hirschsprung’s disease and multiple endocrine neoplasia type 2a: a systematic review. Pediatr Surg Int 30:751–756PubMedCrossRefGoogle Scholar
  17. 17.
    Ibanez CF (2013) Structure and physiology of the RET receptor tyrosine kinase. Cold Spring Harb Perspect Biol 5Google Scholar
  18. 18.
    Mahaffey SM, Martin LW, McAdams AJ, Ryckman FC, Torres M (1990) Multiple endocrine neoplasia type II B with symptoms suggesting Hirschsprung’s disease: a case report. J Pediatr Surg 25:101–103PubMedCrossRefGoogle Scholar
  19. 19.
    Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383PubMedCrossRefGoogle Scholar
  20. 20.
    Wallace AS, Anderson RB (2011) Genetic interactions and modifier genes in Hirschsprung’s disease. World J Gastroenterol 17:4937–4944PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Badner JA, Sieber WK, Garver KL, Chakravarti A (1990) A genetic study of Hirschsprung disease. Am J Hum Genet 46:568–580PubMedCentralPubMedGoogle Scholar
  22. 22.
    Moore SW, Zaahl MG (2012) Intronic RET gene variants in down syndrome-associated Hirschsprung disease in an African population. J Pediatr Surg 47:299–302PubMedCrossRefGoogle Scholar
  23. 23.
    Garcia-Barcelo MM, Tang CS, Ngan ES et al (2009) Genome-wide association study identifies NRG1 as a susceptibility locus for Hirschsprung’s disease. Proc Natl Acad Sci USA 106:2694–2699PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Carrasquillo MM, McCallion AS, Puffenberger EG, Kashuk CS, Nouri N, Chakravarti A (2002) Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nat Genet 32:237–244PubMedCrossRefGoogle Scholar
  25. 25.
    Emison ES, McCallion AS, Kashuk CS et al (2005) A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434:857–863PubMedCrossRefGoogle Scholar
  26. 26.
    Li JC, Ding SP, Song Y, Li MJ (2002) Mutation of RET gene in Chinese patients with Hirschsprung’s disease. World J Gastroenterol 8:1108–1111PubMedGoogle Scholar
  27. 27.
    Shimotake T, Go S, Inoue K, Tomiyama H, Iwai N (2001) A homozygous missense mutation in the tyrosine E kinase domain of the RET proto-oncogene in an infant with total intestinal aganglionosis. Am J Gastroenterol 96:1286–1291PubMedCrossRefGoogle Scholar
  28. 28.
    Asai N, Fukuda T, Wu Z et al (2006) Targeted mutation of serine 697 in the Ret tyrosine kinase causes migration defect of enteric neural crest cells. Development 133:4507–4516PubMedCrossRefGoogle Scholar
  29. 29.
    Amiel J, Sproat-Emison E, Garcia-Barcelo M et al (2008) Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45:1–14PubMedCrossRefGoogle Scholar
  30. 30.
    McCallion AS, Stames E, Conlon RA, Chakravarti A (2003) Phenotype variation in two-locus mouse models of Hirschsprung disease: tissue-specific interaction between Ret and Ednrb. Proc Natl Acad Sci USA 100:1826–1831PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Yin L, Barone V, Seri M et al (1994) Heterogeneity and low detection rate of RET mutations in Hirschsprung disease. Eur J Hum Genet 2:272–280PubMedGoogle Scholar
  32. 32.
    Romeo G, Ronchetto P, Luo Y et al (1994) Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung’s disease. Nature 367:377–378PubMedCrossRefGoogle Scholar
  33. 33.
    Seri M, Yin L, Barone V et al (1997) Frequency of RET mutations in long- and short-segment Hirschsprung disease. Hum Mutat 9:243–249PubMedCrossRefGoogle Scholar
  34. 34.
    Kusafuka T, Wang Y, Puri P (1997) Mutation analysis of the RET, the endothelin-B receptor, and the endothelin-3 genes in sporadic cases of Hirschsprung’s disease. J Pediatr Surg 32:501–504PubMedCrossRefGoogle Scholar
  35. 35.
    Svensson PJ, Anvret M, Molander ML, Nordenskjöld A (1998) Phenotypic variation in a family with mutations in two Hirschsprung-related genes (RET and endothelin receptor B). Hum Genet 103:145–148PubMedCrossRefGoogle Scholar
  36. 36.
    Auricchio A, Griseri P, Carpentieri ML et al (1999) Double heterozygosity for a RET substitution interfering with splicing and an EDNRB missense mutation in Hirschsprung disease. Am J Hum Genet 64(4):1216–1221PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Sancandi M, Ceccherini I, Costa M et al (2000) Incidence of RET mutations in patients with Hirschsprung’s disease. J Pediatr Surg 35:139–142; discussion 142-143 Google Scholar
  38. 38.
    Inoue K, Shimotake T, Iwai N (2000) Mutational analysis of RET/GDNF/NTN genes in children with total colonic aganglionosis with small bowel involvement. Am J Med Genet 93:278–284PubMedCrossRefGoogle Scholar
  39. 39.
    Hofstra RM, Wu Y, Stulp RP et al (2000) RET and GDNF gene scanning in Hirschsprung patients using two dual denaturing gel systems. Hum Mutat 15:418–429PubMedCrossRefGoogle Scholar
  40. 40.
    Julies MG, Moore SW, Kotze MJ, du Plessis L (2001) Novel RET mutations in Hirschsprung’s disease patients from the diverse South African population. Eur J Hum Genet 9:419–423PubMedCrossRefGoogle Scholar
  41. 41.
    Fitze G, Cramer J, Ziegler A et al (2002) Association between c135G/A genotype and RET proto-oncogene germline mutations and phenotype of Hirschsprung’s disease. Lancet 359:1200–1205PubMedCrossRefGoogle Scholar
  42. 42.
    Solari V, Ennis S, Yoneda A et al (2003) Mutation analysis of the RET gene in total intestinal aganglionosis by wave DNA fragment analysis system. J Pediatr Surg 38:497–501PubMedCrossRefGoogle Scholar
  43. 43.
    Guan T, Li JC, Li MJ, Tou JF (2005) Polymerase chain reaction-single strand conformational polymorphism analysis of rearranged during transfection proto-oncogene in Chinese familial Hirschsprung’s disease. World J Gastroenterol 11:275–279PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Sangkhathat S, Kusafuka T, Chengkriwate P, Patrapinyokul S, Sangthong B, Fukuzawa M (2006) Mutations and polymorphisms of Hirschsprung disease candidate genes in Thai patients. J Hum Genet 51:1126–1132PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang XN, Zhou MN, Qiu YQ, Ding SP, Qi M, Li JC (2007) Genetic analysis of RET, EDNRB, and EDN3 genes and three SNPs in MCS + 9.7 in Chinese Patients with isolated Hirschsprung disease. Biochem Genet 45:523–527PubMedCrossRefGoogle Scholar
  46. 46.
    Chin TW, Chiu CY, Tsai HL, Liu CS, Wei CF, Jap TS (2008) Analysis of the RET gene in subjects with sporadic Hirschsprung’s disease. J Chin Med Assoc 71:406–410PubMedCrossRefGoogle Scholar
  47. 47.
    Ishii K, Doi T, Inoue K et al (2013) Correlation between multiple RET mutations and severity of Hirschsprung’s disease. Pediatr Surg Int 29:157–163PubMedCrossRefGoogle Scholar
  48. 48.
    Shimotake T, Iwai N, Inoue K et al (1997) Germline mutation of the RET proto-oncogene in children with total intestinal aganglionosis. J Pediatr Surg 32:498–500PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.National Children’s Research CentreOur Lady’s Children’s HospitalDublinIreland
  2. 2.School of Medicine and Medical ScienceUniversity College DublinDublinIreland
  3. 3.Conway Institute of Biomedical ResearchUniversity College DublinDublinIreland

Personalised recommendations