Advertisement

Pediatric Surgery International

, Volume 30, Issue 8, pp 757–761 | Cite as

Congenital anomalies of the kidney and urinary tract (CAKUT) associated with Hirschsprung’s disease: a systematic review

  • Alejandro D. Hofmann
  • Johannes W. Duess
  • Prem Puri
Original Article

Abstract

Purpose

Congenital anomalies of the kidney and urinary tract (CAKUT), a term introduced in the late 1990s accounts for 30–50 % of cases of end-stage renal disease in children. The association of urogenital anomalies and Hirschsprung’s disease (HSCR) based on the common genetic background of enteric nervous system and human urinary tract development has been well described in the literature. However, the reported prevalence of HSCR associated with CAKUT seems to be underestimated. The aim of this systematic review was to determine the prevalence of this association and show its relationship to other syndromes.

Methods

A systematic literature search was conducted for relevant articles published between 1955 and 2014. Two online databases were searched for the terms “Hirschsprung’s disease”, “congenital anomalies of the kidney and urinary tract”, “urogenital anomalies” and “urological anomalies”. All published studies containing adequate clinical data were included. Resulting publications were reviewed for epidemiology, genetic testing, operative treatment and morbidity. Reference lists were screened for additional cases.

Results

A total of 32 articles reported 222 cases of HSCR associated with either CAKUT, “urological” or “urogenital” anomalies from 1955 to 2014. Gender was reported in a total of 68 cases, with 54 (79 %) males and 14 (21 %) females. Extent of aganglionosis was reported in 67 cases and included classical rectosigmoid disease in 38, long-segment aganglionosis in 12, total colonic aganglionosis in 12 and total intestinal aganglionosis in 5 patients. 18 articles reported 204 cases of either CAKUT, “urological” or “urogenital” anomalies in a case series of 5.693 HSCR patients, resulting in an overall prevalence of 3.6 % of this association. Within this collective of 18 studies only seven were, regardless of the date of publication compatible with CAKUT criteria introduced and published in the late 1990s. These seven studies reported a total of 72 patients with associated CAKUT among 757 HSCR patients resulting in a prevalence of 9.5 %. After introduction of the CAKUT acronym, only three studies specifically investigated the association of HSCR and CAKUT stating a prevalence of 14.3 % resulting in an almost fivefold increase compared to the reported prevalence of HSCR and associated urological and urogenital anomalies. The remaining 14 publications reported 18 single cases of HSCR patients with associated CAKUT phenotypes. Of these 18 cases, 11 (61 %) cases were associated with other syndromes or syndromatic features or reported chromosomal anomalies.

Conclusion

This review confirms that the recognition of CAKUT in HSCR patients has been underestimated in the past. The results suggest that when confronted with HSCR in a patient, a thorough urological investigation may be indicated. The high prevalence of associated syndromes in HSCR with CAKUT may further suggest a syndromic association.

Keywords

Hirschsprungs’s disease CAKUT Congenital urological anomalies 

References

  1. 1.
    Whitehouse FR (1948) Myenteric plexus in congenital megacolon: study of eleven cases. Arch Intern Med (Chic) 82:75–111CrossRefGoogle Scholar
  2. 2.
    Amiel J, Sproat-Emison E, Garcia-Barcelo M et al (2008) Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45:1–14PubMedCrossRefGoogle Scholar
  3. 3.
    Jain S (2009) The many faces of RET dysfunction in kidney. Organogenesis 5:177–190PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Prato AP, Priolo E, Sposetti L et al (2013) A prospective observational study of associated anomalies in Hirschsprung’s disease. Orphanet J Rare Dis 8:184CrossRefGoogle Scholar
  5. 5.
    Schuchardt A, D’Agati V, Larsson-Blomberg L et al (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383. doi: 10.1038/367380a0 PubMedCrossRefGoogle Scholar
  6. 6.
    Moore MW, Klein RD, Fariñas I et al (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79. doi: 10.1038/382076a0 PubMedCrossRefGoogle Scholar
  7. 7.
    Amiel J, Lyonnet S (2001) Hirschsprung disease, associated syndromes, and genetics: a review. J Med Genet 38:729–739PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Costantini F, Shakya R (2006) GDNF/Ret signaling and the development of the kidney. BioEssays 28:117–127. doi: 10.1002/bies.20357 PubMedCrossRefGoogle Scholar
  9. 9.
    Sariola H, Sainio K (1997) The tip-top branching ureter. Curr Opin Cell Biol 9:877–884PubMedCrossRefGoogle Scholar
  10. 10.
    Fivush BA, Jabs K, Neu AM et al (1998) Chronic renal insufficiency in children and adolescents: the 1996 annual report of NAPRTCS. North American Pediatric Renal Transplant Cooperative Study. Pediatr Nephrol 12:328–337PubMedCrossRefGoogle Scholar
  11. 11.
    Hattori S, Yosioka K, Honda M et al (2002) The 1998 report of the Japanese National Registry data on pediatric end-stage renal disease patients. Pediatr Nephrol 17:456–461. doi: 10.1007/s00467-002-0848-8 PubMedCrossRefGoogle Scholar
  12. 12.
    Miklovicova D, Cornelissen M, Cransberg K et al (2005) Etiology and epidemiology of end-stage renal disease in Dutch children 1987–2001. Pediatr Nephrol 20:1136–1142. doi: 10.1007/s00467-005-1896-7 PubMedCrossRefGoogle Scholar
  13. 13.
    Pope JC, Brock JW, Adams MC et al (1999) How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J Am Soc Nephrol 10:2018–2028PubMedGoogle Scholar
  14. 14.
    Moore SW (2006) The contribution of associated congenital anomalies in understanding Hirschsprung’s disease. Pediatr Surg Int 22:305–315. doi: 10.1007/s00383-006-1655-2 PubMedCrossRefGoogle Scholar
  15. 15.
    Sarioglu A, Tanyel FC, Büyükpamukçu N, Hiçsönmez A (1997) Hirschsprung-associated congenital anomalies. Eur J Pediatr Surg 7:331–337PubMedCrossRefGoogle Scholar
  16. 16.
    Prato AP, Musso M, Ceccherini I et al (2009) Hirschsprung Disease and Congenital Anomalies of the Kidney and Urinary Tract (CAKUT). Medicine 88:83–90. doi: 10.1097/MD.0b013e31819cf5da CrossRefGoogle Scholar
  17. 17.
    Spouge D, Baird PA (1985) Hirschsprung disease in a large birth cohort. Teratology 32:171–177. doi: 10.1002/tera.1420320204 PubMedCrossRefGoogle Scholar
  18. 18.
    Passarge E (1967) The genetics of Hirschsprung’s disease: evidence for heterogeneous etiology and a study of sixty-three families. N Engl J Med 276:138–143PubMedCrossRefGoogle Scholar
  19. 19.
    van der Sanden MJH (1994) The hindbrain neural crest and the development of the enteric nervous system. Proefschrift, Erasmus University Rotterdam, pp 121–138Google Scholar
  20. 20.
    Ehrenpreis T (1970) Hirschsprung’s Disease. Year Book Medical Publishers, Chicago, pp 58–61Google Scholar
  21. 21.
    Ryan ET, Ecker JL, Christakis NA, Folkman J (1992) Hirschsprung’s disease: associated abnormalities and demography. J Pediatr Surg 27:76–81PubMedCrossRefGoogle Scholar
  22. 22.
    Ikeda K, Goto S (1986) Additional anomalies in Hirschsprung’s disease: an analysis based on the nationwide survey in Japan. Z Kinderchir 41:279–281. doi: 10.1055/s-2008-1043359 PubMedGoogle Scholar
  23. 23.
    Festen C (1975) Anomalies of the urinary tract in Hirschsprung’s disease. Zeitschrift für Kinderchirurgie und Grenzgebiete 17:376–380Google Scholar
  24. 24.
    Yazbeck S, O’Regan S (1986) Hirschsprung’s disease and urinary tract infection: unrecognized association. Nephron 43:211–213PubMedCrossRefGoogle Scholar
  25. 25.
    Klein MD, Coran AG, Wesley JR, Drongowski RA (1984) Hirschsprung’s disease in the newborn. J Pediatr Surg 19:370–374PubMedCrossRefGoogle Scholar
  26. 26.
    Russell MB, Russell CA, Niebuhr E (1994) An epidemiological study of Hirschsprung’s disease and additional anomalies. Acta Paediatr 83:68–71PubMedCrossRefGoogle Scholar
  27. 27.
    Swenson O, Sherman JO, Fisher JH (1973) Diagnosis of congenital megacolon: an analysis of 501 patients. J Pediatr Surg 8:587–594PubMedCrossRefGoogle Scholar
  28. 28.
    Swenson O, Fisher JH (1955) The relation of megacolon and megaloureter. N Engl J Med 253:1147–1150. doi: 10.1056/NEJM195512292532603 PubMedCrossRefGoogle Scholar
  29. 29.
    Madsen CM (1964) Hirschsprung’s disease. Munksgaard, CopenhagenGoogle Scholar
  30. 30.
    Suita S, Taguchi T, Ieiri S, Nakatsuji T (2005) Hirschsprung’s disease in Japan: analysis of 3852 patients based on a nationwide survey in 30 years. J Pediatr Surg 40:197–201. doi: 10.1016/j.jpedsurg.2004.09.052 (discussion 201-2)PubMedCrossRefGoogle Scholar
  31. 31.
    Ikeda K, Goto S (1986) Additional anomalies in Hirschsprung’s disease: an analysis based on the nationwide survey in Japan. Zeitschrift für Kinderchirurgie 41:279–281PubMedGoogle Scholar
  32. 32.
    Sampson MG, Coughlin CR II, Kaplan P et al (2010) Evidence for a recurrent microdeletion at chromosome 16p11.2 associated with congenital anomalies of the kidney and urinary tract (CAKUT) and Hirschsprung disease. Am J Med Genet 152A:2618–2622. doi: 10.1002/ajmg.a.33628 PubMedCrossRefGoogle Scholar
  33. 33.
    Sinnassamy P, Yazbeck S, Brochu P, O’Regan S (1986) Renal anomalies and agenesis associated with total intestinal aganglionosis. Int J Pediatr Nephrol 7:1–2PubMedGoogle Scholar
  34. 34.
    Virdi VS, Cheema AS (2003) Neonatal Hirschsprung disease with multicystic dysplastic kidneys presenting as multiple gastrointestinal perforations. Trop Gastroenterol 24:99–101PubMedGoogle Scholar
  35. 35.
    Cherian MP, Al-Sanna’a NA (2009) Clinical spectrum of Bardet-Biedl syndrome among four Saudi Arabian families. Clin Dysmorphol 18:188–194PubMedCrossRefGoogle Scholar
  36. 36.
    de Maeyer VMDS, Kestelyn PAFA, Shah AD et al (2013) Extraskeletal osteosarcoma of the orbit: A clinicopathologic case report and review of literature. Indian J Ophthalmol [Epub ahead of print]Google Scholar
  37. 37.
    Hurst JA, Markiewicz M, Kumar D, Brett EM (1988) Unknown syndrome: Hirschsprung’s disease, microcephaly, and iris coloboma: a new syndrome of defective neuronal migration. J Med Genet 25:494–497. doi: 10.1136/jmg.25.7.494 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Naiki M, Mizuno S, Yamada K et al (2011) MBTPS2 mutation causes BRESEK/BRESHECK syndrome. Am J Med Genet 158A:97–102. doi: 10.1002/ajmg.a.34373 PubMedCrossRefGoogle Scholar
  39. 39.
    Santos H, Mateus J, Leal MJ (1988) Hirschsprung disease associated with polydactyly, unilateral renal agenesis, hypertelorism, and congenital deafness: a new autosomal recessive syndrome. J Med Genet 25:204–205PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Martino F, D’Eufemia P, Pergola MS et al (1992) Child with manifestations of dermotrichic syndrome and ichthyosis follicularis–alopecia–photophobia (IFAP) syndrome. Am J Med Genet 44:233–236. doi: 10.1002/ajmg.1320440222 PubMedCrossRefGoogle Scholar
  41. 41.
    Oeffner F, Fischer G, Happle R et al (2009) IFAP syndrome is caused by deficiency in MBTPS2, an intramembrane zinc metalloprotease essential for cholesterol homeostasis and ER stress response. Am J Hum Genet 84:459–467. doi: 10.1016/j.ajhg.2009.03.014 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Loré F, Talidis F, Di Cairano G, Renieri A (2001) Multiple endocrine neoplasia type 2 syndromes may be associated with renal malformations. J Intern Med 250:37–42PubMedCrossRefGoogle Scholar
  43. 43.
    Winkelman J (1967) Coexistent megacolon and megaureter. Report of a case with normal vesical autonomic innervation. Pediatrics 39:258–262PubMedGoogle Scholar
  44. 44.
    Corujeira S, Águeda S, Monteiro G et al (2013) Expanding the phenotype of IFAP/BRESECK syndrome: A new case with severe hypogammaglobulinemia. Eur J Med Genet 56:603–605. doi: 10.1016/j.ejmg.2013.09.005 PubMedCrossRefGoogle Scholar
  45. 45.
    Reish O, Gorlin RJ, Hordinsky M et al (1997) Brain anomalies, retardation of mentality and growth, ectodermal dysplasia, skeletal malformations, Hirschsprung disease, ear deformity and deafness, eye hypoplasia, cleft palate, cryptorchidism, and kidney dysplasia/hypoplasia (BRESEK/BRESHECK): new X-linked syndrome? Am J Med Genet 68:386–390PubMedCrossRefGoogle Scholar
  46. 46.
    Moore SW, Rode H, Millar AJ et al (1991) Familial aspects of Hirschsprung’s disease. Eur J Pediatr Surg 1:97–101. doi: 10.1055/s-2008-1042468 PubMedCrossRefGoogle Scholar
  47. 47.
    Sanna-Cherchi S, Ravani P, Corbani V et al (2009) Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int 76:528–533. doi: 10.1038/ki.2009.220 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alejandro D. Hofmann
    • 1
  • Johannes W. Duess
    • 1
    • 2
  • Prem Puri
    • 1
    • 2
  1. 1.National Children’s Research CentreOur Lady’s Children’s HospitalDublin 12Ireland
  2. 2.School of Medicine and Medical Science and Conway Institute of Biomedical ResearchUniversity College DublinDublinIreland

Personalised recommendations