Advertisement

Pediatric Surgery International

, Volume 30, Issue 2, pp 197–203 | Cite as

Decreased apelin and apelin-receptor expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia

  • Alejandro D. Hofmann
  • Florian Friedmacher
  • Hiromizu Takahashi
  • Manuela Hunziker
  • Jan-Hendrik Gosemann
  • Prem Puri
Original Article

Abstract

Backround

The high morbidity and mortality in congenital diaphragmatic hernia (CDH) are attributed to severe pulmonary hypoplasia and persistent pulmonary hypertension (PH). PH is characterized by structural changes in pulmonary arteries, resulting in adventitial and medial thickness. These effects are triggered by abnormal apoptosis and proliferation of pulmonary vascular endothelial and smooth muscle cells (SMCs). Apelin (APLN), a target gene of bone morphogenic protein receptor 2 (BMPR2), is known to play an important and manifold role in regulating pulmonary homeostasis promoting endothelial cell (EC) survival, proliferation and migration. In addition to these autocrine effects of apelin, it displays a paracrine function attenuating the response of pulmonary SMCs to growth factors and promoting apoptosis. Apelin exerts its effect via its G-protein-coupled receptor (APLNR) and is solely expressed by pulmonary vascular EC, whereas APLNR is co-localized in pulmonary ECs and SMCs. Dysfunction of BMPR2 and downstream signalling have been shown to disturb the crucial balance of proliferation of SMCs contributing to the pathogenesis of human and experimentally induced PH. We designed this study to investigate the hypothesis that apelin and APLNR signalling are disrupted in the pulmonary vasculature of rats in nitrofen-induced CDH.

Methods

Pregnant rats were exposed to nitrofen or vehicle on D9 of gestation. Foetuses were sacrificed on D21 and divided into nitrofen and control group (n = 32). Pulmonary RNA was extracted and mRNA levels of APLN and APLNR were determined by quantitative real-time PCR. Protein expression of apelin and APLNR was investigated by western blotting. Confocal immunofluorescence double staining for apelin, APLNR and SMCs were performed.

Results

Relative mRNA level of APLN and APLNR were significantly decreased in the CDH group compared to control lungs. Western blotting and confocal microscopy confirmed the qRT-PCR results showing decreased pulmonary protein expression of apelin and APLNR in lungs of nitrofen-exposed foetuses compared to controls.

Conclusion

This study provides striking evidence of markedly decreased gene and protein expression of apelin and its receptor APLNR in the pulmonary vasculature of nitrofen-induced CDH. The disruption of the apelin–APLNR signalling axis in the pulmonary vasculature may lead to extensive vascular remodelling and contribute to PPH in the nitrofen-induced CDH model.

Keywords

Congenital diaphragmatic hernia Pulmonary hypertension Nitrofen Apelin Apelin receptor 

References

  1. 1.
    Keijzer R, Puri P (2010) Congenital diaphragmatic hernia. Semin Pediatr Surg 19:180–185. doi: 10.1053/j.sempedsurg.2010.03.001 PubMedCrossRefGoogle Scholar
  2. 2.
    Heath D, Smith P, Gosney J et al (1987) The pathology of the early and late stages of primary pulmonary hypertension. Br Heart J 58:204–213PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Belik J, Davidge ST, Zhang W et al (2003) Airway smooth muscle changes in the nitrofen-induced congenital diaphragmatic hernia rat model. Pediatr Res 53:737–743. doi: 10.1203/01.PDR.0000057986.74037.7B PubMedCrossRefGoogle Scholar
  4. 4.
    Yamataka T, Puri P (1997) Active collagen synthesis by pulmonary arteries in pulmonary hypertension complicated by congenital diaphragmatic hernia. J Pediatr Surg 32:682–687PubMedCrossRefGoogle Scholar
  5. 5.
    Andersen CU, Hilberg O, Mellemkjær S et al (2011) Apelin and pulmonary hypertension. Pulm Circ 1:334–346. doi: 10.4103/2045-8932.87299 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Gosemann J-H, Friedmacher F, Fujiwara N, et al (2013) Disruption of the Bone morphogenetic protein receptor 2 pathway in nitrofen-induced congenital diaphragmatic hernia. Birth Defects Res B. doi: 10.1002/bdrb.21065 (Epub ahead of print)
  7. 7.
    de Jesus Perez VA, Alastalo T-P, Wu JC et al (2009) Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt-beta-catenin and Wnt-RhoA-Rac1 pathways. J Cell Biol 184:83–99. doi: 10.1083/jcb.200806049 PubMedCrossRefGoogle Scholar
  8. 8.
    Alastalo T-P, Li M, de Perez VJ et al (2011) Disruption of PPARγ/β-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. J Clin Invest 121:3735–3746. doi: 10.1172/JCI43382 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Morrell NW, Yang X, Upton PD et al (2001) Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-beta(1) and bone morphogenetic proteins. Circulation 104:790–795PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang S, Fantozzi I, Tigno DD et al (2003) Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 285:L740–L754. doi: 10.1152/ajplung.00284.2002 PubMedGoogle Scholar
  11. 11.
    Bonnet S, Michelakis ED, Porter CJ et al (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113:2630–2641. doi: 10.1161/CIRCULATIONAHA.105.609008 PubMedCrossRefGoogle Scholar
  12. 12.
    Glassford AJ, Yue P, Sheikh AY et al (2007) HIF-1 regulates hypoxia- and insulin-induced expression of apelin in adipocytes. Am J Physiol Endocrinol Metab 293:E1590–E1596. doi: 10.1152/ajpendo.00490.2007 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Morrell NW, Adnot S, Archer SL et al (2009) Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 54:S20–S31. doi: 10.1016/j.jacc.2009.04.018 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Goetze JP, Rehfeld JF, Carlsen J et al (2006) Apelin: a new plasma marker of cardiopulmonary disease. Regul Pept 133:134–138. doi: 10.1016/j.regpep.2005.09.032 PubMedCrossRefGoogle Scholar
  15. 15.
    Chandra SM, Razavi H, Kim J et al (2011) Disruption of the apelin–APJ system worsens hypoxia-induced pulmonary hypertension. Arterioscler Thromb Vasc Biol 31:814–820. doi: 10.1161/ATVBAHA.110.219980 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Greer JJ (2013) Current concepts on the pathogenesis and etiology of congenital diaphragmatic hernia. Respir Physiol Neurobiol. doi: 10.1016/j.resp.2013.04.015 Google Scholar
  17. 17.
    Beurskens N, Klaassens M, Rottier R et al (2007) Linking animal models to human congenital diaphragmatic hernia. Birth Defects Res Part A Clin Mol Teratol 79:565–572. doi: 10.1002/bdra.20370 PubMedCrossRefGoogle Scholar
  18. 18.
    Mayer S, Metzger R, Kluth D (2011) The embryology of the diaphragm. Semin Pediatr Surg 20:161–169. doi: 10.1053/j.sempedsurg.2011.03.006 PubMedCrossRefGoogle Scholar
  19. 19.
    Luong C, Rey-Perra J, Vadivel A et al (2011) Antenatal sildenafil treatment attenuates pulmonary hypertension in experimental congenital diaphragmatic hernia. Circulation 123:2120–2131. doi: 10.1161/CIRCULATIONAHA.108.845909 PubMedCrossRefGoogle Scholar
  20. 20.
    Runo JR, Loyd JE (2003) Primary pulmonary hypertension. Lancet 361:1533–1544. doi: 10.1016/S0140-6736(03)13167-4 PubMedCrossRefGoogle Scholar
  21. 21.
    Gurbanov E, Shiliang X (2006) The key role of apoptosis in the pathogenesis and treatment of pulmonary hypertension. Eur J Cardiothorac Surg 30:499–507. doi: 10.1016/j.ejcts.2006.05.026 PubMedCrossRefGoogle Scholar
  22. 22.
    Keegan A, Morecroft I, Smillie D et al (2001) Contribution of the 5-HT(1B) receptor to hypoxia-induced pulmonary hypertension: converging evidence using 5-HT(1B)-receptor knockout mice and the 5-HT(1B/1D)-receptor antagonist GR127935. Circ Res 89:1231–1239PubMedCrossRefGoogle Scholar
  23. 23.
    Guignabert C, Raffestin B, Benferhat R et al (2005) Serotonin transporter inhibition prevents and reverses monocrotaline-induced pulmonary hypertension in rats. Circulation 111:2812–2819. doi: 10.1161/CIRCULATIONAHA.104.524926 PubMedCrossRefGoogle Scholar
  24. 24.
    Piairo P, Moura RS, Nogueira-Silva C, Correia-Pinto J (2011) The apelinergic system in the developing lung: expression and signaling. Peptides 32:2474–2483. doi: 10.1016/j.peptides.2011.10.010 PubMedCrossRefGoogle Scholar
  25. 25.
    Falcão-Pires I, Gonçalves N, Henriques-Coelho T et al (2009) Apelin decreases myocardial injury and improves right ventricular function in monocrotaline-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 296:H2007–H2014. doi: 10.1152/ajpheart.00089.2009 PubMedCrossRefGoogle Scholar
  26. 26.
    Habata Y, Fujii R, Hosoya M et al (1999) Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim Biophys Acta 1452:25–35PubMedCrossRefGoogle Scholar
  27. 27.
    Katugampola SD, Maguire JJ, Matthewson SR, Davenport AP (2001) [125I]-(Pyr 1)Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br J Pharmacol 132:1255–1260. doi: 10.1038/sj.bjp.0703939 PubMedCrossRefGoogle Scholar
  28. 28.
    Ishida J (2004) Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem 279:26274–26279. doi: 10.1074/jbc.M404149200 PubMedCrossRefGoogle Scholar
  29. 29.
    Du L, Sullivan CC, Chu D et al (2003) Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med 348:500–509. doi: 10.1056/NEJMoa021650 PubMedCrossRefGoogle Scholar
  30. 30.
    Atkinson C, Stewart S, Upton PD et al (2002) Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 105:1672–1678PubMedCrossRefGoogle Scholar
  31. 31.
    Gosemann J-H, Doi T, Kutasy B et al (2012) Alterations of peroxisome proliferator-activated receptor γ and monocyte chemoattractant protein 1 gene expression in the nitrofen-induced hypoplastic lung. J Pediatr Surg 47:847–851. doi: 10.1016/j.jpedsurg.2012.01.038 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alejandro D. Hofmann
    • 1
  • Florian Friedmacher
    • 1
  • Hiromizu Takahashi
    • 1
  • Manuela Hunziker
    • 1
  • Jan-Hendrik Gosemann
    • 1
    • 3
  • Prem Puri
    • 1
    • 2
  1. 1.National Children’s Research CentreOur Lady’s Children’s Hospital, CrumlinDublin 12Ireland
  2. 2.School of Medicine and Medical Science and Conway Institute of Biomedical ResearchUniversity College DublinDublinIreland
  3. 3.Department of Pediatric SurgeryHannover Medical SchoolHannoverGermany

Personalised recommendations