Advertisement

Pediatric Surgery International

, Volume 29, Issue 12, pp 1311–1320 | Cite as

Carbon dioxide insufflation causes upper urinary tract injury in the early period of an experimental vesicoureteral reflux model

  • Huseyin Kilincaslan
  • Gokhan Gundogdu
  • Elcin Hakan Terzi
  • Hulya Ozturk
  • Tulin Firat
  • Mehmet Tosun
Original Article

Abstract

Purpose

Ureteral reimplantation via pneumovesicum is a new aspect of vesicoureteral reflux management. We aimed to determine the effects of carbon dioxide (CO2) insufflation on the upper urinary tract in an experimental model.

Materials and methods

Thirty New Zealand rabbits were allocated into five groups of six rabbits each. Right ureters were cannulated for CO2 insufflation in four groups. The pressures and durations of CO2 insufflation in the respective groups were as follows: Group A (10 mm Hg, 2 h); B (12 mm Hg, 2 h); C (10 mm Hg, 4 h); and D (12 mm Hg, 4 h) and control (E). Blood gas analysis, urea and creatinine levels were measured from renal veins and aorta. Histopathological evaluation of the renal parenchyma and ureters was scored.

Results

Significant histopathological changes were detected in the ipsilateral ureter and renal parenchyma exposed to CO2 insufflation, predominantly observed in groups insufflated for longer durations, p < 0.05. Blood gases drawn separately from renal veins were significantly more acidotic, and serum urea and creatinine levels were increased in all the groups, p < 0.05.

Conclusions

CO2 causes significant histopathological and biochemical changes in the early period. Long-term results are required to determine whether permanent renal injury occurs.

Keywords

Carbon dioxide Upper urinary tract Vesicoureteral reflux Pneumovesicum Ureteral reimplantation 

Notes

Acknowledgments

We thank Omer Uysal of the Bezmialem Vakif University Medical Faculty Department of Biostatics for the statistical analysis. We also thank Zafer Dogan for his contributions to this study.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Caione P, Ciofetta G, Collura G, Morano S, Capozza N (2004) Renaldamage in vesico-ureteric reflux. BJU Int 93(4):591–595PubMedCrossRefGoogle Scholar
  2. 2.
    Valla JS, Steyaert H, Griffin SJ, Lauron J, Fragoso AC, Arnaud P, Léculée R (2009) Transvesicoscopic Cohen ureteric reimplantation for vesicoureteral reflux in children: a single-centre 5-year experience. J Pediatr Urol 5(6):466–471PubMedCrossRefGoogle Scholar
  3. 3.
    Smaldone MC, Polsky E, Ricchiuti DJ, Docimo SG (2007) Advances in pediatric urologic laparoscopy. Review Article. Scientific World J 7:727–741CrossRefGoogle Scholar
  4. 4.
    Beese RC, Bees NR, Belli AM (2000) Renal angiography using carbondioxide. Br J Radiol 73:3–6PubMedGoogle Scholar
  5. 5.
    Demyttenaere S, Feldman LS, Fried GM (2007) Effect of pneumoperitoneum on renal perfusion and function: a systematic review. SurgEndosc 21:152–160Google Scholar
  6. 6.
    Xiang B, Liu JX, Sung HB, Yan B, Cheng W (2010) The effect of CO2 pneumovesicum on upper urinary tract. J Pediatr Surg 45:1863–1867PubMedCrossRefGoogle Scholar
  7. 7.
    Emir H, Mammadov E, Elicevik M, Buyukunal C, Soylet Y (2012) Transvesicoscopic cross-trigonal ureteroneocystostomy in children: a single-center experience. J Pediatr Urol 8(1):83–86PubMedCrossRefGoogle Scholar
  8. 8.
    Hong CH, Kim JH, Jung HJ, Im YJ, Han SW (2011) Single-surgeon experience with transvesicoscopic ureteral reimplantation in children with vesicoureteral reflux. Urology 77:1465–1469PubMedCrossRefGoogle Scholar
  9. 9.
    Yeung CK, Sihoe JD, Borzi PA (2005) Endoscopic cross-trigonal ureteral reimplantation under carbondioxide bladder insufflation: a novel technique. J Endourol 19:295–299PubMedCrossRefGoogle Scholar
  10. 10.
    Lakshmanan Y, Fung LC (2000) Laparoscopic extravesicular ureteral reimplantation for vesicoureteral reflux: recent technical advances. J Endourol 14(7):589–594PubMedCrossRefGoogle Scholar
  11. 11.
    Canon SJ, Jayanthi VR, Patel AS (2007) Vesicoscopic cross-trigonal ureteral reimplantation: a minimally invasive option for repair of vesicoureteral reflux. J Urol 178(1):269–273PubMedCrossRefGoogle Scholar
  12. 12.
    Chiu AW, Chang LS, Birkett DH, Babayan RK (1995) The impact of pneumoperitoneum, pneumoretroperitoneum, and gasless laparoscopy on the systemic and renal hemodynamics. J Am Coll Surg 181:397–406PubMedGoogle Scholar
  13. 13.
    Gutt CN, Oniu T, Mehrabi A, Schemmer P, Kashfi A, Kraus T, Büchler MW (2004) Circulatory and respiratory complications of carbondioxide insufflation. Dig Surg 21:95–105PubMedCrossRefGoogle Scholar
  14. 14.
    Dolgor B, Kitano S, Yoshida T, Bandoh T, Ninomiya K, Matsumoto T (1998) Vasopressin antagonist improves renal function in a rat model of pneumoperitoneum. J SurgRes 79(2):109–114Google Scholar
  15. 15.
    Are C, Kutka M, Talamini M, Hardacre J, Mendoza-Sagaon M, Hanley E, Toung T (2002) Effect of laparoscopic antireflux surgery upon renal blood flow. Am J Surg 183(4):419–423PubMedCrossRefGoogle Scholar
  16. 16.
    Nguyen NT, Perez RV, Fleming N, Rivers R, Wolfe BM (2002) Effect of prolonged pneumoperitoneum on intraoperative urine output during laparoscopic gastric bypass. J Am Coll Surg 195:476–483PubMedCrossRefGoogle Scholar
  17. 17.
    Lindberg F, Bergqvist D, Björck M, Rasmussen I (2003) Renal hemodynamics during carbondioxide pneumoperitoneum: an experimental study in pigs. SurgEndosc 17(3):480–484Google Scholar
  18. 18.
    GomezDammeier BH, Karanik E, Gluer S, Jesch NK, Kübler J, Latta K, Sümpelmann R, Ure BM (2005) Anuria during pneumoperitoneum in infants and children: a prospectivestudy. J Pediatr Surg 40:1454–1458CrossRefGoogle Scholar
  19. 19.
    Wiesenthal JD, Fazio LM, Perks AE, Blew BD, Mazer D, Hare G, Honey RJ, Pace KT (2011) Effect of pneumoperitoneum on renal tissue oxygenation and blood flow in a rat model. Urology 77(6):1508.e9–1508.e15CrossRefGoogle Scholar
  20. 20.
    Lee BR, Cadeddu JA, Molnar-Nadasdy G, Enriquez D, Nadasdy T, Kavoussi LR, Ratner LE (1999) Chronic effect of pneumoperitoneum on renal histology. J Endourol 13(4):279–282PubMedCrossRefGoogle Scholar
  21. 21.
    Micali S, Silver RI, Kaufman HS, Douglas VD, Marley GM, Partin AW, Moore RG, Kavoussi LR, Docimo SG (1999) Measurement of urinary N-acetyl-beta-d-glucosaminidase to assess renal ischemia during laparoscopic operations. SurgEndosc 13(5):503–506Google Scholar
  22. 22.
    Khoury W, Szold A, Klausner JM, Weinbroum AA (2008) The hemodynamic effects of CO2-induced pressure on the kidney in an isolated perfused rat kidney model. Surg Laparosc Endosc PercutanTech 18(6):573–578CrossRefGoogle Scholar
  23. 23.
    Khoury W, Jakowlev K, Fein A, Orenstein H, Nakache R, Weinbroum AA (2008) Renal apoptosis following carbon dioxide pneumoperitoneum in a rat model. J Urol 180(4):1554–1558PubMedCrossRefGoogle Scholar
  24. 24.
    Shimizu T, Tanabe K, Ishida H, Toma H, Yamaguchi Y (2004) Histopathological evaluation of 0-h biopsy specimens of donor kidney procured by laparoscopic donor nephrectomy. ClinTransplant 18:24–28Google Scholar
  25. 25.
    Sassa N, Hattori R, Yamamoto T, Kato M, Komatsu T, Matsukawa Y, Funahashi Y, Gotoh M (2009) Direct visualization of renal hemodynamics affected by carbondioxide-induced pneumoperitoneum. Urology 73(2):311–315PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Huseyin Kilincaslan
    • 1
  • Gokhan Gundogdu
    • 1
  • Elcin Hakan Terzi
    • 2
  • Hulya Ozturk
    • 3
  • Tulin Firat
    • 2
  • Mehmet Tosun
    • 4
  1. 1.Department of Pediatric Surgery, Faculty of MedicineBezmialem Vakif UniversityIstanbulTurkey
  2. 2.Department of Histology and Embryology, Faculty of MedicineAbant Izzet Baysal UniversityBoluTurkey
  3. 3.Department of Pediatric Surgery, Faculty of MedicineAbant Izzet Baysal UniversityBoluTurkey
  4. 4.Department of Biochemistry, Faculty of MedicineAbant Izzet Baysal UniversityBoluTurkey

Personalised recommendations