Pediatric Surgery International

, Volume 29, Issue 1, pp 25–31 | Cite as

Increased trophoblastic apoptosis mediated by neutrophil gelatinase-associated lipocalin (NGAL) activation in the nitrofen model of congenital diaphragmatic hernia

  • Balazs Kutasy
  • Jan H. Gosemann
  • Johannes W. Duess
  • Prem Puri
Original Article



Retinoids play a key role in fetal lung development. It has been suggested that the maternal–fetal retinol transport is disrupted by trophoblastic apoptosis. The mechanism underlying nitrofen-induced apoptosis in placenta is not fully understood. Neutrophil gelatinase-associated lipocalin (NGAL) is expressed in the fetal part of the maternal–fetal interface. NGAL is part of the immune barrier and serves primarily as a transport protein transferring biologically hazardous molecules in a safe and controlled way. It has been shown that over-activation of NGAL induces apoptosis. We hypothesized that increased placental NGAL expression induces trophoblastic apoptosis in the nitrofen model of CDH.


Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Placenta harvested on D21 and divided into two groups: control and nitrofen with CDH. Immunohistochemistry was performed to evaluate trophoblasts (by cytokeratin expression), NGAL expression, and apoptotic trophoblastic cells (using TUNEL assay). Total RNA was extracted from each placenta and the relative mRNA expression levels of NGAL were analyzed using RT-PCR.


Immunohistochemistry showed NGAL immunoreactivity both in control and CDH in the fetal part of the fetal–maternal interface of placenta. Markedly increased NGAL expression was detected in CDH group compared to controls. Relative mRNA expression levels of NGAL gene were significantly increased in the CDH group compared to control in the placenta (5.924 ± 0.93 vs. 1.895 ± 0.54, p < 0.001). Markedly increased numbers of apoptotic trophoblastic cells were seen in the maternal–fetal interface in the CDH group compared to controls.


NGAL activation may lead to increased trophoblastic apoptosis in the maternal–fetal interface in the nitrofen model of CDH. These changes may therefore cause disturbance in maternal–fetal retinol transport affecting fetal lung morphogenesis.


Neutrophil gelatinase-associated lipocalin (NGAL) Trophoblast Nitrofen Congenital diaphragmatic hernia 


  1. 1.
    Colvin J, Bower C, Dickinson JE, Sokol J (2005) Outcomes of congenital diaphragmatic hernia: a population-based study in Western Australia. Pediatrics 116(3):e356–e363PubMedCrossRefGoogle Scholar
  2. 2.
    Stege G, Fenton A, Jaffray B (2003) Nihilism in the 1990 s: the true mortality of congenital diaphragmatic hernia. Pediatrics 112(3 Pt 1):532–535PubMedCrossRefGoogle Scholar
  3. 3.
    Gosche JR, Islam S, Boulanger SC (2005) Congenital diaphragmatic hernia: searching for answers. Am J Surg 190(2):324–332PubMedCrossRefGoogle Scholar
  4. 4.
    Robinson PD, Fitzgerald DA (2007) Congenital diaphragmatic hernia. Paediatr Respir Rev 8(4):323–334 quiz 334-325PubMedCrossRefGoogle Scholar
  5. 5.
    Montedonico S, Nakazawa N, Puri P (2008) Congenital diaphragmatic hernia and retinoids: searching for an etiology. Pediatr Surg Int 24(7):755–761PubMedCrossRefGoogle Scholar
  6. 6.
    Noble BR, Babiuk RP, Clugston RD, Underhill TM, Sun H, Kawaguchi R, Walfish PG, Blomhoff R, Gundersen TE, Greer JJ (2007) Mechanisms of action of the congenital diaphragmatic hernia-inducing teratogen nitrofen. Am J Physiol Lung Cell Mol Physiol 293(4):L1079–L1087PubMedCrossRefGoogle Scholar
  7. 7.
    Kutasy B, Gosemann JH, Doi T, Fujiwara N, Friedmacher F, Puri P (2012) Nitrofen interferes with trophoblastic expression of retinol-binding protein and transthyretin during lung morphogenesis in the nitrofen-induced congenital diaphragmatic hernia model. Pediatr Surg Int 28(2):143–148PubMedCrossRefGoogle Scholar
  8. 8.
    Gosemann JH, Doi T, Kutasy B, Friedmacher F, Dingemann J, Puri P (2012) Alterations of peroxisome proliferator-activated receptor gamma and monocyte chemoattractant protein 1 gene expression in the nitrofen-induced hypoplastic lung. J Pediatr Surg 47(5):847–851PubMedCrossRefGoogle Scholar
  9. 9.
    Friedmacher F, Doi T, Gosemann JH, Fujiwara N, Kutasy B, Puri P (2012) Upregulation of fibroblast growth factor receptor 2 and 3 in the late stages of fetal lung development in the nitrofen rat model. Pediatr Surg Int 28(2):195–199PubMedCrossRefGoogle Scholar
  10. 10.
    Clagett-Dame M, DeLuca HF (2002) The role of vitamin A in mammalian reproduction and embryonic development. Annu Rev Nutr 22:347–381PubMedCrossRefGoogle Scholar
  11. 11.
    Beurskens LW, Tibboel D, Lindemans J, Duvekot JJ, Cohen-Overbeek TE, Veenma DC, de Klein A, Greer JJ, Steegers-Theunissen RP (2010) Retinol status of newborn infants is associated with congenital diaphragmatic hernia. Pediatrics 126(4):712–720PubMedCrossRefGoogle Scholar
  12. 12.
    Gallot D, Marceau G, Coste K, Hadden H, Robert-Gnansia E, Laurichesse H, Dechelotte PJ, Labbe A, Dastugue B, Lemery D, Sapin V (2005) Congenital diaphragmatic hernia: a retinoid-signaling pathway disruption during lung development? Birth Defects Res A Clin Mol Teratol 73(8):523–531PubMedCrossRefGoogle Scholar
  13. 13.
    Nakazawa N, Montedonico S, Takayasu H, Paradisi F, Puri P (2007) Disturbance of retinol transportation causes nitrofen-induced hypoplastic lung. J Pediatr Surg 42(2):345–349PubMedCrossRefGoogle Scholar
  14. 14.
    Ruttenstock E, Doi T, Dingemann J, Puri P (2011) Prenatal administration of retinoic acid upregulates insulin-like growth factor receptors in the nitrofen-induced hypoplastic lung. Birth Defects Res B Dev Reprod Toxicol 92(2):148–151PubMedCrossRefGoogle Scholar
  15. 15.
    Quadro L, Hamberger L, Gottesman ME, Wang F, Colantuoni V, Blaner WS, Mendelsohn CL (2005) Pathways of vitamin A delivery to the embryo: insights from a new tunable model of embryonic vitamin A deficiency. Endocrinology 146(10):4479–4490PubMedCrossRefGoogle Scholar
  16. 16.
    Quadro L, Hamberger L, Gottesman ME, Colantuoni V, Ramakrishnan R, Blaner WS (2004) Transplacental delivery of retinoid: the role of retinol-binding protein and lipoprotein retinyl ester. Am J Physiol Endocrinol Metab 286(5):E844–E851PubMedCrossRefGoogle Scholar
  17. 17.
    Tadesse S, Luo G, Park JS, Kim BJ, Snegovskikh VV, Zheng T, Hodgson EJ, Arcuri F, Toti P, Parikh CR, Guller S, Norwitz ER (2011) Intra-amniotic infection upregulates neutrophil gelatinase-associated lipocalin (NGAL) expression at the maternal–fetal interface at term: implications for infection-related preterm birth. Reprod Sci 18(8):713–722PubMedCrossRefGoogle Scholar
  18. 18.
    Bahmani P, Halabian R, Rouhbakhsh M, Roushandeh AM, Masroori N, Ebrahimi M, Samadikuchaksaraei A, Shokrgozar MA, Roudkenar MH (2010) Neutrophil gelatinase-associated lipocalin induces the expression of heme oxygenase-1 and superoxide dismutase 1, 2. Cell Stress Chaperones 15(4):395–403PubMedCrossRefGoogle Scholar
  19. 19.
    Nelson AM, Zhao W, Gilliland KL, Zaenglein AL, Liu W, Thiboutot DM (2008) Neutrophil gelatinase-associated lipocalin mediates 13-cis retinoic acid-induced apoptosis of human sebaceous gland cells. J Clin Invest 118(4):1468–1478PubMedCrossRefGoogle Scholar
  20. 20.
    Dingemann J, Doi T, Ruttenstock E, Puri P (2010) Abnormal platelet-derived growth factor signaling accounting for lung hypoplasia in experimental congenital diaphragmatic hernia. J Pediatr Surg 45(10):1989–1994PubMedCrossRefGoogle Scholar
  21. 21.
    Morriss-Kay GM, Ward SJ (1999) Retinoids and mammalian development. Int Rev Cytol 188:73–131PubMedCrossRefGoogle Scholar
  22. 22.
    Sapin V, Ward SJ, Bronner S, Chambon P, Dolle P (1997) Differential expression of transcripts encoding retinoid binding proteins and retinoic acid receptors during placentation of the mouse. Dev Dyn 208(2):199–210PubMedCrossRefGoogle Scholar
  23. 23.
    Clugston RD, Zhang W, Greer JJ (2010) Early development of the primordial mammalian diaphragm and cellular mechanisms of nitrofen-induced congenital diaphragmatic hernia. Birth Defects Res A Clin Mol Teratol 88(1):15–24PubMedGoogle Scholar
  24. 24.
    Kling DE, Cavicchio AJ, Sollinger CA, Schnitzer JJ, Kinane TB, Newburg DS (2010) Nitrofen induces apoptosis independently of retinaldehyde dehydrogenase (RALDH) inhibition. Birth Defects Res B Dev Reprod Toxicol 89(3):223–232PubMedGoogle Scholar
  25. 25.
    Manson JM (1986) Mechanism of nitrofen teratogenesis. Environ Health Perspect 70:137–147PubMedCrossRefGoogle Scholar
  26. 26.
    Brown TJ, Manson JM (1986) Further characterization of the distribution and metabolism of nitrofen in the pregnant rat. Teratology 34(2):129–139PubMedCrossRefGoogle Scholar
  27. 27.
    Devireddy LR, Gazin C, Zhu X, Green MR (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123(7):1293–1305PubMedCrossRefGoogle Scholar
  28. 28.
    Berger T, Togawa A, Duncan GS, Elia AJ, You-Ten A, Wakeham A, Fong HE, Cheung CC, Mak TW (2006) Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci U S A 103(6):1834–1839PubMedCrossRefGoogle Scholar
  29. 29.
    Bachman MA, Miller VL, Weiser JN (2009) Mucosal lipocalin 2 has pro-inflammatory and iron-sequestering effects in response to bacterial enterobactin. PLoS Pathog 5(10):e1000622PubMedCrossRefGoogle Scholar
  30. 30.
    Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33(3):337–349PubMedCrossRefGoogle Scholar
  31. 31.
    Gonzalez-Reyes S, Martinez L, Martinez-Calonge W, Fernandez-Dumont V, Tovar JA (2006) Effects of antioxidant vitamins on molecular regulators involved in lung hypoplasia induced by nitrofen. J Pediatr Surg 41(8):1446–1452PubMedCrossRefGoogle Scholar
  32. 32.
    Gonzalez-Reyes S, Martinez L, Martinez-Calonge W, Fernandez-Dumont V, Tovar JA (2006) Effects of nitrofen and vitamins A, C and E on maturation of cultured human H441 pneumocytes. Biol Neonate 90(1):9–16PubMedCrossRefGoogle Scholar
  33. 33.
    Islam S, Narra V, Cote GM, Manganaro TF, Donahoe PK, Schnitzer JJ (1999) Prenatal vitamin E treatment improves lung growth in fetal rats with congenital diaphragmatic hernia. J Pediatr Surg 34(1):172–176 discussion 176–177PubMedCrossRefGoogle Scholar
  34. 34.
    Thebaud B, Tibboel D, Rambaud C, Mercier JC, Bourbon JR, Dinh-Xuan AT, Archer SL (1999) Vitamin A decreases the incidence and severity of nitrofen-induced congenital diaphragmatic hernia in rats. Am J Physiol 277(2 Pt 1):L423–L429PubMedGoogle Scholar
  35. 35.
    Fisher JC, Kling DE, Kinane TB, Schnitzer JJ (2002) Oxidation-reduction (redox) controls fetal hypoplastic lung growth. J Surg Res 106(2):287–291PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Balazs Kutasy
    • 1
  • Jan H. Gosemann
    • 1
  • Johannes W. Duess
    • 1
  • Prem Puri
    • 1
  1. 1.The National Children’s Research CenterOur Lady’s Children’s HospitalDublinIreland

Personalised recommendations